Implementation of a Collaborative Function on a Four Degrees of Freedom Robot Arm

Main Article Content

Dávid Kóczi
Mihály Jernei
József Sárosi

Abstract

A wide range of applications exist where workspaces are shared with humans by collaborative robots, making it important for them to be able to work safely together. The robotic arm has been designed and built with four degrees of freedom and rotary joints. It can react to unexpected external forces and collisions during movement by measuring motor current. The robotic arm components have been 3D printed, and the joints are driven by digital RC servo motors. The control interface is provided by two Arduino microcontrollers, and the control is executed through a graphical user interface developed in the LabVIEW graphical programming environment. Various measurements were performed on the collaborative robot arm to assess how the implemented device and collaborative function meet the preliminary expectations. The tests focused on impact direction determination, reaction time, impact forces, positioning accuracy, and the load capacity of the robotic arm. The measurements showed that the robot is capable of collaborative operation within given limits. The usability of the system and its potential for further development were evaluated.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kóczi, Dávid, Mihály Jernei, and József Sárosi. 2023. “Implementation of a Collaborative Function on a Four Degrees of Freedom Robot Arm”. Jelenkori Társadalmi és Gazdasági Folyamatok 18 (Különszám):247-58. https://doi.org/10.14232/jtgf.2023.kulonszam.247-258.
Section
Articles
Author Biographies

Dávid Kóczi, Szegedi Tudományegyetem - Mérnöki Kar

tanársegéd

Mihály Jernei, Szegedi Tudományegyetem Mérnöki Kar, Mechatronikai és Automatizálási Intézet (Szeged)

mechatronkai mérnök MSc-hallgató

József Sárosi, Szegedi Tudományegyetem Mérnöki Kar, Mechatronikai és Automatizálási Intézet (Szeged)

egyetemi tanár, stratégiai és fejlesztési dékánhelyettes

References

Aaltonen, I., Salmi, T., Marstio, I (2018): Refining levels of collaboration to support the design and evaluation of human-robot interaction in the manufacturing industry. Procedia CIRP, 72: 93–98. https://doi.org/10.1016/j.procir.2018.03.214.

Bi, Z. M., Luo, C., Miao, Z., Zhang, B., Zhang, W. J., Wang, L. (2021):Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robotics and Computer-Integrated Manufacturing, 67: 102022. https://doi.org/10.1016/j.rcim.2020.102022

Bjönr, M., Reisinger, T. (2016): Example application of ISO/TS 15066 to a collaborative assembly scenario. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, 1–5.

Feng, Z., Hu, G., Sun, Y., Soon, J. (2020): An overview of collaborative robotic manipulation in multi-robot systems, Annual Reviews in Control, 49): 113–127. https://doi.org/10.1016/j.arcontrol.2020.02.002

Franklin, C., Dominguez, E., Fryman, J., Lewandowski, M. (2020): Collaborative robotics: New era of human–robot cooperation in the workplace. Journal of Safety Research, 74: 153–160. https://doi.org/10.1016/j.jsr.2020.06.013

Hentout, A., Aouache, M., Maoudj, A., Akli, A., (2019): Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017. Advanced Robotics, 33: 15–16, 764–799, https://doi.org/10.1080/01691864.2019.1636714

ISO 10218-2:2011 (2011): Robotok és robotikai eszközök - Biztonsági követelmények ipari robotok számára - 2. rész: Robotrendszerek és integráció.

ISO/TS 15066 (2016): Robotok és robot szerkezetek. Kollaboratív robotok.

Kragic, D., Gustafson, J., Karaoguz, H., Jensfelt, P., Krug, R. (2018): Interactive, Collaborative Robots: Challenges and Opportunities. IJCAI, 18–25. https://doi.org/10.24963/ijcai.2018/3

Long, P., Chevallereau, C., Chablat, D., Girin, A. (2018): An industrial security system for human-robot coexistence. Industrial Robot, 45 (2): 220–226. https://doi.org/10.1108/IR-09-2017-0165

Marvel, J. A., Norcross, R. (2017): Implementing speed and separation monitoring in collaborative robot workcells. Robotics and computer-integrated manufacturing, 44: 144–155. https://doi.org/10.1016/j.rcim.2016.08.001

Mihelj, M., Bajd, T., Ude, A., Lenarčič, J., Stanovnik, A., Munih, M., Šlajpah, S. (2019): Collaborative robots. Robotics, 173–187. https://doi.org/10.1007/978-3-319-72911-4_12

Parodi F., Gerio P., (2017): An Example of Collaborative Robot for Automotive and General Industry Applications. Procedia Manufacturing, 11: 338–345. https://doi.org/10.1016/j.promfg.2017.07.116.

Raiola, G., Cardenas, C. A., Tadele, T. S., De Vries, T., Stramigioli, S. (2018): Development of a safety-and energy-aware impedance controller for collaborative robots. IEEE Robotics and automation letters, 3 (2): 1237–1244. https://doi.org/10.1109/LRA.2018.2795639

Tsuji, S., Kohama, T. (2019): Proximity skin sensor using time-of-flight sensor for human collaborative robot. IEEE Sensors Journal, 19 (14): 5859–5864. https://doi.org/10.1109/JSEN.2019.2905848

Vicentini F. (2020): Collaborative Robotics: A Survey. ASME. J. Mech. Des., 143 (4): 040802. https://doi.org/10.1115/1.4046238