Industrial digitalization – Industry 4.0 and Virtual Reality (VR) in Production
Main Article Content
Abstract
Industrial digitalization allow manufacturers to study the virtual elements of the system, enabling them to analyse and design where real-world changes are needed. Virtual reality reduces unnecessary design by giving the engineer the opportunity to test changes before the final solution is created. Virtual reality training programs can simulate realistic and risky scenarios in a manufacturing environment (such as chemical spills, dangerous machinery, and noisy environments) without putting workers in actual danger. If the inevitable does happen, employees will have usable experience and are more likely to respond appropriately to the situation. Perhaps one of the most significant indicators of the industrial potential of augmented (AR) and virtual reality (VR) can be seen in the change in recruitment by major engineering companies. Lately, companies have been extremely open and actively recruiting people with degrees in game design. These young engineers are adept at virtual reality and Android and mobile devices, helping to make Industry 4.0 and IoT (Internet of Things) solutions tangible.
Downloads
Article Details
References
Andersson, S. K. L., Bruch., J., Hedelind, M., Granlund A. (2021): Critical Factors Supporting the Implementation of Collaborative Robot Applications. 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) 1–7. https://doi.org/10.1109/ETFA45728.2021.9613422
Csikós, S., Bálint, Á. (2016): DC motor speed control in LabVIEW. Recent Innovations in Mechatronics, 3 (1-2): 1–3. https://doi.org/10.17667/riim.2016.1-2/15.
Đekić, M. D., Mester Gy. (2021): Kiberbiztonság, kiberműveletek vizsgálata, Vajdasági Magyar Tudományos Társaság.
Digital twins for Industrial Applications. An Industrial Internet Consortium White Paper (2020): <https://www.iiconsortium.org/pdf/IIC_Digital_Twins_Industrial_Apps_White_Paper_2020-02-18.pdf> (2023.02.10).
Dominik, C., Ákos, O., Richárd, P., József, S., Peter, S. (2023): A novel orientation-based FSPL model parameter optimization method using PSO for indoor localization. In: IEEE 21st World Symposium on Applied Machine Intelligence and Informatics SAMI (2023): Proceedings. 201–205.
Gogolák, L., Fürstner, I. (2020): Wireless sensor network aided assembly line monitoring according to expectations of industry 4.0. Applied Sciences, 11 (1): 25. https://doi.org/10.3390/app11010025
Hattayer M., Gál J. (2022): Az ellátási lánc menedzsment gyógyszeripari aspektusai. Jelenkori Társadalmi és Gazdasági Folyamatok, 17 (1-2): 51–58. https://doi.org/10.14232/jtgf.2022.1-2.51-58
Kóczi D., Sárosi J. (2022): Kollaboratív robotok ipari alkalmazása – Áttekintés. Jelenkori Társadalmi és Gazdasági Folyamatok, 17 (1-2): 145–152. https://doi.org/10.14232/jtgf.2022.1-2.145-152
Mészáros, A., Sárosi, J. (2022): Soft Robotics: State of Art and Outlook. Analecta Technica Szegedinensia, 16 (1): 8–13. https://doi.org/10.14232/analecta.2022.1.8-13
Open Manufacturing Platform (2022): <https://open-manufacturing.org/> (2023.02.07.)
Pletikoszity, Á., Fürstner, I., Gogolák, L. (2022): Industry 4.0 and Rami Model Based Art in Microindustry for Polishing Application. In: Security-Related Advanced Technologies in Critical Infrastructure Protection: Theoretical and Practical Approach. Dordrecht: Springer Netherlands. 331–340. https://doi.org/10.1007/978-94-024-2174-3_28
Sánta, R. (2022). Investigations of the performance of a heat pump with internal heat exchanger. Journal of thermal analysis and calorimetry, 147(15): 8499–8508. https://doi.org/10.1007/s10973-021-11130-5
The Digital Twin Consortium. (2023): <https://www.digitaltwinconsortium.org/> (2023.02.07.)