Design and Implementation of a 3 Degrees of Freedom Robotic Arm Powered by Pneumatic Artificial Muscle

Authors

DOI:

https://doi.org/10.14232/analecta.2024.2.1-10

Keywords:

Pneumatic Artificial Muscle, Robotic Arm, Sliding Mode Control, human–robot collaboration, Collaborative robot

Abstract

The development of a 3-DOF robotic arm powered by pneumatic artificial muscles is represented as an innovative approach in the field of robotics, with the advantages of lightweight and flexible design being combined with the power and control benefits of pneumatic actuation. The design process, challenges, and solutions that were encountered in the development of the robotic arm are outlined in this paper, with an emphasis on its potential applications in industrial and research settings being highlighted. Additionally, the robotic arm’s modular design is enabled to allow easy customization and scalability, making it possible for the arm to be tailored to a wide range of tasks, from precise laboratory work to more robust industrial applications.

Downloads

Download data is not yet available.

References

M. Bartoš, V. Bulej, M. Bohušík, J. Stanček, V. Ivanov, P. Macek, „An overview of robot applications in automotive industry”, 14th International scientific conference on sustainable, modern and safe transport, Virtual conference, May 2021

E., L.D., Gjerstad, T., Grøtli, E.I. et al. Trends in Smart Manufacturing: Role of Humans and Industrial Robots in Smart Factories. Curr Robot Rep 1, 35–41 (2020). https://doi.org/10.1007/s43154-020-00006-5

J. A. Fishel, T. Oliver, M. Eichermueller, G. Barbieri,Ethan Fowler, T. Hartikainen, L. Moss, and R. Walker „Tactile Telerobots for Dull, Dirty, Dangerous, and Inaccessible Tasks” 2020 IEEE International Conference on Robotics and Automation (ICRA)

S. Bouchard, „Lean robotics” 2020; 213. oldal

K. Béla , „Robottechnika I.”

H. Prasaath K, https://www.engineersgarage.com/tech-articles/choosing-motor-for-robots/, 2021

P.A. Laski, J.E. Takosoglu, S. Blasiak, Design of a 3-DOF tripod electro-pneumatic parallel manipulator, Robotics and Autonomous Systems (2015), http://dx.doi.org/10.1016/j.robot.2015.04.009

D. Stoianovici, Alexandru Patriciu, Member, Doru Petrisor, Dumitru Mazilu, Member, and Louis Kavoussi, „A New Type of Motor: Pneumatic Step Motor”

D. Bendov and S. E. Salcudean, “A force-controlled pneumatic actuator” IEEE Trans. Robot. Autom., vol. 11, no. 6, Dec. 1995.

Sárosi J.: Elimination of the Hysteresis Effect of PAM Actuator: Modelling and Exper-imental Studies, Technical Gazette, 2015, Vol. 22, No. 6, Print ISSN 1330-3651, Online ISSN 1848-6339, pp. 1489-1494)

A. Verl ,Alin Albu-Schäffer, Oliver Brock Annika Raatz, „Soft Robotics”

J. Sárosi, „Doktori értekezés: Pneumatikus mesterséges izmok működésének statikus és dinamikus modellezése, nagypontosságú pozícionálása” 2014

P. Beyl, M. Van Damme, R. Van Ham, B. Vanderborght, and D. Lefeber, „Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons” 2013

J. Gyeviki, „Doktori értekezés: Szervopneumatikus pozícionálás pontosságának

növelése DSP alapú csúszómód szabályozással” 2007

Lin, C.-J.; Sie, T.-Y.; Chu, W.-L.; Yau, H.-T.; Ding, C.-H., „Tracking Control of Pneumatic Artificial Muscle-Activated Robot Arm Based on Sliding-Mode Control. Actuators” 2021

Downloads

Published

2024-08-04

How to Cite

Kóczi, D., & Sárosi, J. (2024). Design and Implementation of a 3 Degrees of Freedom Robotic Arm Powered by Pneumatic Artificial Muscle. Analecta Technica Szegedinensia, 18(2), 1–10. https://doi.org/10.14232/analecta.2024.2.1-10

Issue

Section

Articles