Challenges of Subsurface Hydrogen Storage in Balancing Periodic Renewable Electricity Production
Main Article Content
Abstract
The latest scientific research is aimed at promoting a carbon-free economy in addition to the use of electricity from renewable energy sources. Although renewable energy sources can provide a solution to anthropogenic greenhouse gas emissions from fossil fuels, they are seasonal, thereby resulting in a renewable energy surplus or deficit when combined with the annually changing but constant energy demand. Therefore, it is essential to develop a long-term storage system that balances their periodic demand and supply. In our article, we present the effects of hydrogen on the storage reservoir, we describe the types of underground storage, which are determined by the energy initially used for production, the form of the final energy consumed, energy conversion methods and combinations of these elements.
Downloads
Article Details
Funding data
-
European Commission
Grant numbers RRF-2.3.1-21-2022-00009
References
Alvarez, J., Crovetto, R., Fernandez-Prini, R. (1988): Dissolution of N2 and of H2 in water from room temperature to 640 K. Berichte Der Bunsengesellschaft/Physical Chem Chem Phys, 92 (8): 935–940. http://www.doi.org/10.1002/bbpc.198800223
Amid, A., Mignard, D., Wilkinson, M. (2016): Seasonal storage of hydrogen in a depleted natural gas reservoir. Hydrogen Energy, 41 (12): 5549–5558. http://www.doi.org/10.1016/j.ijhydene.2016.02.036
Davison, J., Arienti, S., Cotone, P., Mancuso, L. (2010): Co-production of hydrogen and electricity with CO2 capture. Int. J. Greenh Gas Control, 4 (2): 125–130. http://www.doi.org/10.1016/j.ijggc.2009.10.007
Energy. Gov. (2021): Hydrogen storage department of energy 2021. <https://www.energy.gov/eere/fuelcells/hydrogen-storage> (2021.11.22.)
Gahleitner, G. (2013): Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Hydrogen Energy, 38 (5): 2039–2061. http://www.doi.org/10.1016/j.ijhydene.2012.12.010
Hajibeygi, H. (2021): Underground Hydrogen Storage: A multiscale experimental and numerical study. <https://www.youtube.com/watch?v=2VqAeYU22n0>
Hashemi, L., Blunt, M., Hajibeygi, H. (2021): Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Sci. Rep., 11: 8348, 1–13. http://www.doi.org/10.1038/s41598-021-87490-7
Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., Ostertag-Henning, Ch., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G. J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M., Bentham, M., Haszeldine, R. S., Carbonell, R., Rudloff, A. (2021): Enabling large-scale hydrogen storage in porous media-the scientific challenges. Energy Environ. Sci., 14 (2): 853–864. http://www.doi.org/10.1039/d0ee03536j
He, T., Rong, Z., Zheng, J., Ju, Y., Linga, P. (2019): LNG cold energy utilization: Prospects and challenges. Energy, 170: 557–568. http://www.doi.org/10.1016/j.energy.2018.12.170
Iglauer, S., Wülling, W. (2016): The scaling exponent of residual nonwetting phase cluster size distributions in porous media. Geophys. Res. Lett., 43 (21): 11. 253–11, 260. http://www.doi.org/10.1002/2016GL071298
Keshavarz, A., Abid, H., Ali, M., Iglauer, S. (2021): Hydrogen diffusion in coal: Implications for Hydrogen Geo-Storage. J. Colloid Interface Sci., 608 (2): 1457–1462. https://doi.org/10.1016/j.jcis.2021.10.050
Kumar, K. Ramesh., Makhmutov, A., Spiers, C. J., Hajibeygi, H. (2021): Geomechanical simulation of energy storage in salt formations. Sci. Rep., 11: 1–24. http://www.doi.org/10.1038/s41598-021-99161-8
Laban, M. P. (2020): Hydrogen storage in salt caverns. Diplomadolgozat. e Delft University of Technology, Delft.
Lord, A. S., Kobos, P. H., Borns, D. J. (2014): Geologic storage of hydrogen: Scaling up to meet city transportation demands. Hydrogen Energy, 39 (28): 15570–15582. http://www.doi.org/10.1016/j.ijhydene.2014.07.121
Pan, B., Yin, X., Ju, Y., Iglauer, S. (2021): Underground hydrogen storage : Influencing parameters and future outlook. Adv. Colloid Interface Sci., 294: 102473. http://www.doi.org/10.1016/j.cis.2021.102473
Panfilov, M., Gravier, G., Fillacier, S. (2006): Underground storage of H2 and H2-CO2-CH4 mixtures. In: 10th Eur Conf Math Oil Recover. ECMOR 2006. http://www.doi.org/10.3997/2214-4609.201402474
Panfilov, M. (2010): Underground storage of hydrogen: In situ self-organisation and methane generation. Transp. Porous Media, 85: 841–865. http://www.doi.org/10.1007/s11242-010-9595-7
Panfilov, M. (2016): Underground and pipeline hydrogen storage. Compendium of Hydrogen Energy, Volume 2. Elsevier. 91–115. http://www.doi.org/10.1016/B978-1-78242-362-1.00004-3
Paterson, L. (1983): The implications of fingering in underground hydrogen storage. International Journal of Hydrogen Energy, 8 (1): 53–59, https://doi.org/10.1016/0360-3199(83)90035-6
Rossen, W. R., Duijn, C. J. Van, Nguyen, Q. P., Shen, C., Vikingstad, A. K. (2010): Injection strategies to overcome gravity segregation in simultaneous gas and water injection into homogeneous reservoirs. SPE Journal, 15 (1): 76–90. https://doi.org/10.2118/99794-PA
Tarkowski, R., 2019. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev., 105: 86–94. http://www.doi.org/10.1016/j.rser.2019.01.051
Tompa R. (2011): A felszín alatti szénelgázosítás (UCG) technológiai folyamatainak áttekintése, Miskolci Egyetem, Műszaki Földtudományi Kar Szekciókiadvány, Doktoranduszok Fóruma, Miskolc, 2011. november 8.
Zhang, F., Zhao, P., Niu, M., Maddy, J. (2016): The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy, 41 (33): 14535–14552. http://www.doi.org/10.1016/j.ijhydene.2016.05.293
Zivar, D., Kumar, S., Foroozesh, J. (2021): Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy, 46 (45): 23436–23462. https://doi.org/10.1016/j.ijhydene.2020.08.138
Züttel, A. (2004): Hydrogen storage methods. Naturwissenschaften, 91: 157–172. http://www.doi.org/10.1007/s00114-004-0516-x