The Examination of Effects of Sewage Sediment With High Toxic Element Content on Plant Physiological Parameters
Main Article Content
Abstract
The effect of sewage sedimen with a high content of toxic elements on plant physiology and morphology was investigated in the case of maize (Zea mays L.) and cucumber (Cucumis sativus L.) grown on in a nutrient solution. We sought answers to the following questions: (i) how does the increasing concentration of toxic elements affect its germination; (ii) is there a difference between the uptake of toxic elements by monocotyledonous and dicotyledonous plants; (iii) how the element content of different plant parts, the intensity of root and shoot growth, and the accumulation of dry matter develop; (iv) does it have an effect on photosynthetic activity, the amount of photosynthetic pigments; (v) to what extent the test plants are able to develop a defense mechanism against the effects of toxic elements, is there a difference in the activity of their stress enzymes. We found: the high content of toxic elements strongly inhibits germination; compared to cucumber, corn stores K, Mn and B among the macro-, meso- and micro-elements better; in cucumber, compared to corn, a higher volume of N, P, Ca, Mg, Fe and Ba accumulation is observed. In the case of corn, most of the toxic elements (Cd, Cr, Pb, Ni) remain in the roots, they move to a small extent in the soil-plant system. At the same time, Zn and Cu appear in the shoot for both tested plants. The bioconcentration factor (BF) of Zn in corn sprouts is six times higher than in cucumber sprouts, while the BF of Cu is higher in cucumber sprouts. In the case of corn, as a result of the treatment, the length of the stem and the raw mass of the shoot decreased, in the case of cucumber, they exceeded the values measured in the case of control plants. As a result of the treatment, the root length decreased in the case of both plants, while the raw mass of the root decreased in the case of corn and increased in the case of cucumber. In both cases, the process of SIMV (stress-induced morphogenetic responses) was observed: the root system thickened, the length of the root decreased. The reason for the decrease in the dry mass of corn roots is probably the significant amount of toxic elements (Cr, Ni, As, Ba) accumulated in the root. However, the dry weight of the cucumber shoot increased by almost 4%, while the dry weight of the root increased by 23%. In the case of corn, the ratio of chlorophyll-a/chlorophyll-b increased, which indicates the inappropriate functioning of the photosynthetic pigment systems. In cucumber, the treatment did not have a negative effect on the functioning of the photosynthetic pigment systems, this was realized in a greater accumulation of organic matter and dry mass. As a result of the treatment, the activity of the "stress enzymes" changed: the activity of the catalase enzyme showed a close correlation with the development of the accumulated lead content in the case of both test plants; the development of peroxidase activity in the case of corn showed a close correlation with Ba and the concentration of Zn, Cr, Ni, and As accumulated in the vegetative organs, in the case of cucumber a close correlation was found only in the case of lead.
Downloads
Article Details
References
/2009. (IV.14.) KVVM-EÜM-FVM együttes rendelet a földtani közeg és a felszín alatti víz szennyezéssel szembeni védelméhez szükséges határértékekről és a szennyezések méréséről.
Ackova, D. G. (2018): Heavy metals and their general toxicity on plants. Plant Science Today, 15 (1): 14. https://doi.org/10.14719/pst.2018.5.1.355
Asati, A., Mohnish, P., Kumar, N. (2016): Effect of Heavy Metals on Plants: An Overview. International Journal of Application or Innovation in Engineering & Management, 5 (3): 55–66. http://www.doi.org/10.13140/RG.2.2.27583.87204
Benyó D., Horváth E., Németh E., Leviczky T., Takács K., Lehotai N., Feigl G., Kolbert Zs., Ördög A., Gallé R., Csiszár J., Szabados L., Erdei L., Gallé Á. (2016): Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. Journal of Plant Physiology, 201: 62–70. https://doi.org/10.1016/j.jplph.2016.05.025
Birouste, M., Zamora-Ledezma, E., Bossard, C., Pérez-Ramos, I. P., Roumet, C. (2014): Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content. Plant Soil, 374 (1-2): 299–313. http://www.doi.org/10.1007/s11104-013-1874-y
Bradford, M. M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72 (1-2): 248–54. https://doi.org/10.1016/0003-2697(76)90527-3
Burzynski, M., Buczek, J. (1994): The influence of Cd, Pb, Cu and Ni on NO3- uptake by cucumber seedlings. II. In vitro and in vivo effects of Cd, Cu, Pb and Ni on the plasmalemma ATPase and oxidoreductase from cucumber seedlings roots. Acta Physiol. Plant, 16: 297–302.
Cavalcanti, F. R., Oliveira, J. T. A., Martins-Miranda, A. S., Gas, R. A. V., Silveira, J. A. G. (2004): Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in saltstressed cowpea leaves. New Phytologist, 163 (3): 563–571. https://doi.org/10.1111/j.1469-8137.2004.01139.x
Da-lin, L., Kai-qi, H., Jing-jing, M., Wei-wei, Q., Xiu-ping, W., Shu-pan, Z. (2011): Effects of cadmium on the growth and physiological haracteristics of sorghum plants. African Journal of Biotechnology, 70: 15770–15776.
Emamverdian, A., Ding, Y., Mokhberdoran, F., Xie, Y. (2015): Heavy metal stress and some mechanisms of plant defense response. The scientific world journal, 2015: Article ID 756120. https://doi.org/10.1155/2015/756120
Eun, SO., Shik, Youn H., Lee, Y. (2000): Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol. Plant., 110 (3): 357–365. http://wwwdoi.org/10.1111/j.1399-3054.2000.1100310.x
Feigl G. (2015): Nehézfém-indukált nitro-oxidatív stressz vizsgálata Brassica fajokban, Doktori értekezés. SZTE, Szeged.
Fodor F., Király I., Bratek Z., Nyitrai P., Parádi I., Rácz I., Rudnóy Sz., Sárvári É., Solti Á., Szigeti Z., Tamás L. (2013): A növényi anyagcsere élettana. ELTE, Budapest.
Gajdos É. (2013): Kukorica és napraforgó hibridek kadmium érzékenysége, a káros hatások mérséklésének lehetősége. PhD Értekezés. Debreceni Egyetem MÉK. Debrecen.
Kabata-Pendias, A., Pendias, H. (2001): Trace Elements in Soils and Plants. CRC Press, Boca Raton, London, New York, Washington D.C.
Kibria, M. G., Hossain, M., Murata, Y., Hoque, M. A. (2017): Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science, 24 (3): 155–162. https://doi.org/10.1016/j.rsci.2017.05.001
Leskó K. I. (2005): Búzanövények biológiailag aktív komponenseinek változása kadmium-stressz hatására. Doktori értekezés. BME, Budapest.
Lévai L. (2004): The effect of smut gall tumour infection on iron and zinc uptake and distribution in maize seedlings. Journal of Agricultural Sciences, 15: 27–32.
Lévai L., Kovács B. (2001): The influence of IAA and TIBA on iron concentration of maize seedlings. In: Horst, W. J., Schenk, M. K., Buerkert, A., Claassen, N. (szerk.): Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research. Kluwer Academic Publishers. 154–155. http://www.doi.org/10.1007/0-306-47624-X_74
Lichtenthaler, H. K., Kuhn, G., Prenzel, U. (1982): Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Zeitschrift Naturforschung, C37 (5): 464–475. http://www.doi.org/10.1515/znc-1982-5-619
Madhu, P.M., Sadagopan, R. S. (2020): Effect of heavy metals on growth and development of cultivated plants with reference to cadmium, chromium and lead – a review. Journal of Stress Physiology & Biochemistry, 16 (3): 84–102.
Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., Díez, S. (2016): Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the Total Environment, 542 (Pt A): 809–816. http://www.doi.org/10.1016/j.scitotenv.2015.10.117
Moran, R., Porath, D. (1980): Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol., 65 (3): 478–479. https://doi.org/10.1104%2Fpp.65.3.478
Naza, R., Khana, M. S.,Hafeezb, A., Fazila, M., Khana, M. N. C.†, Alib, B., Javedd, M. A., Imrana, M., Shatie, A. A., Alfaifie, M. Y., Elbehairie, S. E. I., Ahmedg, A. E. (2022): Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. Brazilian Journal of Biology, 84: e264473. https://doi.org/10.1590/1519-6984.264473
Pant , P. P., Tripathi, A. K. (2014): Impact of heavy metals on morphological and biochemical parameters of Shorea robusta plant. Ekológia, 33 (2): 116–126. https://doi.org/10.2478/eko-2014-0012
Shankar, S. R., Madhu, P. M. (2020): Effect of Heavy Metals on Growth and Developement of Cultivated Plants with Reference to Cadmium, Chromium and Lead – A Review. Journal of Stress Physiology & Biochemistry, 16 (3): 84–102.
Simon L. (2004): Fitoremediáció. Környezetvédelmi Füzetek. Azonosító: 2318. BMKE OMIKK, Budapest. 1–59.
Simon, L. (2014): Potentially harmful elements in agricultural soils. In: Bini, C., Bech. J. (szerk.): PHEs, Environment and Human Health. Potentially Harmful Elements in the Environment and the Impact on Human Health. Springer, Dordrecht, Heidelberg, New York, London. 85–137, 142–150.
Simon L. (2006): Toxikus elemek akkumulációja, fitoindikációja és fitoremediációja a talaj-növény rendszerben. Akadémiai Doktori Értekezés. NYE, Nyíregyháza.
Singh, R. P., Agrawal, M. (2007): Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67 (11): 2229–2240. https://doi.org/10.1016/j.chemosphere.2006.12.019
Valadez-Villarreal, A., Maldonado-Magaña, A., Bernabé-Antonio, A., Estrada-Zúñiga, M.E., Román-Guerrero, A., Cruz-Sosa, F. (2015): Effect of Cr and Pb on the activity antioxidant enzymes in a cell suspension culture of Jatropha curcas. Revista mexicana de ingeniería química, 14 (3): 681–689.
Wójcik, M., Tukendorf, A. (1999): Cd-tolerance of maize, rye and wheat seedlings. Acta Phys. Plant., 21 (2): 99–107. http://www.doi.org/10.1007/s11738-999-0063-3