Modelling of a Recently Invented Solar Pot

Authors

DOI:

https://doi.org/10.14232/analecta.2024.2.38-48

Keywords:

solar pot, solar collector, mathematical modelling, simulation results, planning of experiments

Abstract

The subject of the research is a so-called the solar pot which is a new invention protected at the Hungarian Intellectual Property Office (utility model, patent number 5489). The pot can be used for heating or cooking (foods, drinks or other fluids). It has a similar structure to a double pipe heat exchanger with an outer jacket and an inner cooking space. Although it has been manufactured, its capabilities have not been tested neither by modelling and simulation nor with experiments and measurements, so these investigations represent a completely new research field. The goal of this work is the mathematical modelling of the pot which allows the prediction of the pot temperature. The modelling and the first simulation results based on it are presented in this paper, based on which conclusions can be drawn regarding the efficiency and applicability of the pot. Future research plan is also presented which includes the construction of an experimental system of the pot and a solar collector, and further modelling of the system and system elements. On the system, measurements will be made under different conditions, allowing the assessment of the pot’s functionality and the validation of the mathematical models.

Downloads

Download data is not yet available.

Author Biographies

Márton Rátkai, Hungaian University of Agriculture and Life Sciences

Mechanical Engineering Doctoral School

Richárd Kicsiny, Magyar Agrár- és Élettudományi Egyetem

Department of Mathematics and Modelling, Institute of Mathematics and Basic Science

László Székely, Magyar Agrár- és Élettudományi Egyetem

Department of Mathematics and Modelling, Institute of Mathematics and Basic Science

References

I. Farkas, Solar energy in agriculture, Mezőgazda Lap- és Könyvkiadó Kft., Budapest, 2003 (in Hungarian)

A. Saxena, N. Agarwal, Performance characteristics of a new hybrid solar cooker with air duct, Solar Energy, 159 (2018), pp. 628-637. https://doi.org/10.1016/j.solener.2017.11.043

A. Saxena, E. Cuce, G. N. Tiwari, A. Kumar, Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research, Energy, 206 (2020), pp. 1-15. https://doi.org/10.1016/j.energy.2020.118144

A. W. Bigelow, J. Tabatchnick, C. Hughes, Testing Solar Cookers for Cooking Efficiency, Solar Energy Advantages, (2024), pp. 1-7. https://doi.org/10.1016/j.seja.2024.100053

P. K. Gupta, A. Misal, S. Agrawal, Development of low cost reflective panel solar cooker, Materialstoday: Proceedings, 45 (2) (2021), pp. 1-4. https://doi.org/10.1016/j.matpr.2020.12.004

P. Saini, S. Pandey, S. Goswami, A. Dhar, M. E. Mohamed, S. Powar, Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven, Energy, 280 (2023), pp. 1-12. https://doi.org/10.1016/j.energy.2023.128188

M. Hosseinzadeh, A. Faezian, S. M. Mirzababaee, Parametric analysis and optimization of a portable evacuated tube solar cooker, Energy, 194 (2020), pp. 1-12. https://doi.org/10.1016/j.energy.2019.116816

C. Zhou, Y. Wang, J. Li, X. Ma, Q. Li, M. Yang, X. Zhao, Y. Zhu, Simulation and economic analysis of an innovative indoor solar cooking system with energy storage, Solar Energy, 263 (2023), pp. 1-15. https://doi.org/10.1016/j.solener.2023.111816

M. Hosseinzadeh, R. Sadeghirad, H. Zamani, A. Kianifar, S. M. Mirzababaee, The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis, Renewable Energy, 165 (1) (2021), pp. 14-24. https://doi.org/10.1016/j.renene.2020.10.078

H. M. S. Hussein, H. H. El-Ghetany, S. A. Nada, Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit, Energy Conversion and Management, 49 (8) (2008), pp. 2237-2246. https://doi.org/10.1016/j.enconman.2008.01.026

M. Y. Getnet, D. G. Gunjo, D. K. Sinha, Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors, Results in Engineering, 18 (2023), pp. 1-14. https://doi.org/10.1016/j.rineng.2023.101022

USDA (Food Safety and Inspection Service, U.S. Department of Agriculture), Safe Minimum Internal Temperature Chart, https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/safe-temperature-chart (28th May 2024)

R. Kumar, R. S. Adhikari, H. P. Garg, A. Kumar, Thermal performance of a solar pressure cooker based on evacuated tube solar collector, Applied Thermal Engineering, 21 (16) (2001), pp. 1699-1706. https://doi.org/10.1016/S1359-4311(01)00018-7

K. Schwarzer, T. Krings, Demonstrations- und Feldtest von Solarkochern mit temporärem Speicher in Indien und Mali, Abschlussbericht, 1996

J. Buzás, I. Farkas, Solar domestic hot water system simulation using blockoriented software, The 3rd ISES-europe Solar World Congress, CD-ROM Proceedings, København, Denmark, 2000, pp. 1-9.

L. S. M. Castellanos, A. L. G. Noguera, E. I G. Velásquez, G. E. C. Caballero, E. E: S. Lora, V. R: M. Cobas, Mathematical modeling of a system composed of parabolic trough solar collectors integrated with a hydraulic energy storage system, Energy, 208 (2020), pp. 1-16. https://doi.org/10.1016/j.energy.2020.118255

S. A. Kalogirou, S. Panteliou, A. Dentsoras, Modeling of Solar Domestic Water Heating Systems Using Artificial Neural Networks, Solar Energy, 65 (1999), pp. 335-342. https://doi.org/10.1016/S0038-092X(99)00013-4

L. Brus, D. Zambrano, Black-box identification of solar collector dynamics with variant time delay, Control Engineering Practice, 18 (2010), pp. 1133-1146. https://doi.org/10.1016/j.conengprac.2010.06.006

J. Zheng, R. Febrer, J. Castro, D. Kizildag, J. Rigola, A new high-performance flat plate solar collector. Numerical modelling and experimental validation, Applied Energy, 355 (2023), pp. 1-14. https://doi.org/10.1016/j.apenergy.2023.122221

H. C. Hottel, A. Whillier, Evaluation of flat-plate collector performance, Trans. Conf. Use of Solar Energy, 3 (2) 1955

J. Buzás, I. Farkas, A. Biró, R. Németh, Modelling and simulation aspects of a solar hot water system, Mathematics and Computers in Simulation, 48 (1998), pp. 33-46. https://doi.org/10.1016/S0378-4754(98)00153-0

F. Hilmer, K. Vajen, A. Ratka, H. Ackermann, W. Fuhs, O. Melsheimer, Numerical solution and validation of a dynamic model of solar collectors working with varying fluid flow rate, Solar Energy, 65 (5) (1999), pp. 305-321. https://doi.org/10.1016/S0038-092X(98)00142-X

C. Mao, M. Li, N. Li, M. Shan, X. Yang, Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting, Applied Energy, 238 (2019), pp. 54-68. https://doi.org/10.1016/j.apenergy.2019.01.006

P. Géczyné Víg, Modelling of solar collector systems with neural network, PhD thesis, Szent István University, Gödöllő, 2007 (in Hungarian)

R. Kicsiny, Multiple linear regression based model for solar collectors, Solar Energy, 110 (2014), pp. 496-506. https://doi.org/10.1016/j.solener.2014.10.003

D. P. Hiris, O. G. Pop, M. C. Balan, Analytical modeling and validation of the thermal behavior of seasonal storage tanks for solar district heating, Energy Reports, 8 (9) (2022), pp. 741-755. https://doi.org/10.1016/j.egyr.2022.07.113

V. Badescu, Optimal control of flow in solar collector systems with fully mixed water storage tanks, Energy Conversion and Management, 49 (2) (2008), pp. 169-184. https://doi.org/10.1016/j.enconman.2007.06.022

R. Kicsiny, Black-box model for solar storage tanks based on multiple linear regression, Renewable Energy, 125 (2018), pp. 857-865. https://doi.org/10.1016/j.renene.2018.02.037

J. Bradley, Counterflow, crossflow and cocurrent flow heat transfer in heat exchangers: Analytical solution based on transfer units, Heat and Mass Transfer, 46 (2010), pp. 381-394. https://doi.org/10.1007/s00231-010-0579-5

B. Zohuri, Compact Heat Exchangers, Selection, Application, Design and Evaluation, Springer International Publishing, Switzerland, 2017 https://doi.org/10.1007/978-3-319-29835-1

G. Géczi, R. Kicsiny, P. Korzenszky, Modified effectiveness and linear regression based models for heat exchangers under heat gain/loss to the environment, Heat and Mass Transfer, 55 (2019), pp. 1167-1179. https://doi.org/10.1007/s00231-018-2495-z

A. Zavala-Río, R. Santiesteban-Cos, Reliable compartmental models for double-pipe heat exchangers: An analytical study, Applied Mathematical Modelling, 31 (9) (2007), pp. 1739-1752. https://doi.org/10.1016/j.apm.2006.06.005

G. Géczi, R. Kicsiny (inventors), Hungarian University of Agriculture and Life Sciences (owner), Apparatus for Preparing Food with Solar Energy and/or for Heating Liquid, Utility Model Protection, Hungarian Intellectual Property Office, patent number 5489, 2021 (in Hungarian)

E. Cao, Heat Transfer in Process Engineering, 1st Edition, McGraw-Hill Education, ISBN: 9780071624084, 2010

Downloads

Published

2024-08-04

How to Cite

Rátkai, M., Kicsiny, R., & Székely, L. (2024). Modelling of a Recently Invented Solar Pot. Analecta Technica Szegedinensia, 18(2), 38–48. https://doi.org/10.14232/analecta.2024.2.38-48

Issue

Section

Articles

Funding data