The protective effects of dietary polyphenols on Alzheimer's disease
A Review
DOI:
https://doi.org/10.14232/analecta.2022.1.14-26Keywords:
Alzheimer's disease, Amyloid beta, Neurodegeneration, PolyphenolsAbstract
Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disease in the hippocampus and cortex regions of the brain and is the most common cause of dementia in the elderly population among 40 million cases worldwide today, it is thought that this number will exceed up to 100 million by 2050. The disease is characterized by symptoms of memory loss, difficulty in speaking, decision making, learning, problem solving, and impaired perception of time and orientation. In its pathogenesis, the amyloid beta (Aβ) senile plaques accumulation in the extracellular synaptic spaces of the neurocortex, the formation of intracellular hyperphosphorylated tau protein deposition and neurofibrillary tangles (NFY) are important and triggered neurodegeneration mainly affects cognitive behavior and memory. Phenolic compounds are organic compounds containing a benzene ring to which one or more hydroxyl groups are attached. Studies have shown that regular consumption of polyphenols reduces the risk of developing neurodegenerative diseases. Studies have reported that polyphenols inhibit Aβ production and accumulation processes by interacting with different forms of amyloid structure. In this study, polyphenols and their therapeutic properties against AD will be discussed extensively.
Downloads
References
Colombres M., Sagal J. P., Inestrosa N. C. (2004): An overview of the current and novel drugs for Alzheimer's disease with particular reference to anti-cholinesterase compounds, Current pharmaceutical design 10(25), 3121-3130. https://doi.org/10.2174/1381612043383359
Patterson, C. (2018): World alzheimer report 2018.
Singh M., Kaur M., Kukreja H., Chugh R., Silakari O., Singh D. (2013): Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection, European journal of medicinal chemistry 70, 165-188. https://doi.org/10.1016/j.ejmech.2013.09.050
Lansdall C. J. (2014): An effective treatment for Alzheimer's disease must consider both amyloid and tau, Bioscience Horizons: The International Journal of Student Research 7, 1-11. https://doi.org/10.1093/biohorizons/hzu002
Minati L., Edginton T., Grazia Bruzzone M., Giaccone G. (2009): Reviews: current concepts in Alzheimer's disease: a multidisciplinary review, American Journal of Alzheimer's Disease & Other Dementias® 24(2), 95-121. https://doi.org/10.1177/1533317508328602
Kumar K., Kumar A., Keegan R. M., Deshmukh R. (2018): Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease, Biomedicine & pharmacotherapy 98, 297-307. https://doi.org/10.1016/j.biopha.2017.12.053
Tramutola A., Lanzillotta C., Perluigi M., Butterfield D. A. (2017): Oxidative stress, protein modification and Alzheimer disease, Brain research bulletin 133, 88-96. https://doi.org/10.1016/j.brainresbull.2016.06.005
Hane F. T., Robinson M., Lee B. Y., Bai O., Leonenko Z., Albert M. S. (2017): Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment, Journal of Alzheimer's Disease 57(3), 645-665. https://doi.org/10.3233/JAD-160907
Kamat P. K., Kalani A., Rai S., Swarnkar S., Tota S., Nath C., Tyagi N. (2016): Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies, Molecular neurobiology 53(1), 648-661. https://doi.org/10.1007/s12035-014-9053-6
Kumar A., Singh A., Aggarwal A. (2017): Therapeutic potentials of herbal drugs for Alzheimer’s disease—An overview, Indian Journal of Experimental Biology 55(2), 63-73.
Hansen R. A., Gartlehner G., Webb A. P., Morgan L. C., Moore C. G., Jonas D. E. (2008): Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis, Clinical interventions in aging 3(2), 211.
Zeng Q., Siu W., Li L., Jin Y. U., Liang S., Cao M., Wu Z. (2019): Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine, Experimental Gerontology 119, 100-110. https://doi.org/10.1016/j.exger.2019.01.027
Mattioli R., Francioso A., d’Erme M., Trovato M., Mancini P., Piacentini L., Mosca L. (2019): Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer’s disease, International journal of molecular sciences 20(3), 708. https://doi.org/10.3390/ijms20030708
Chen Z., Zhong C. (2014): Oxidative stress in Alzheimer’s disease, Neuroscience bulletin 30(2), 271-281. https://doi.org/10.1007/s12264-013-1423-y
Liu Z., Zhou T., Ziegler A. C., Dimitrion P., Zuo, L. (2017): Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications, Oxidative medicine and cellular longevity 2017. https://doi.org/10.1155/2017/2525967
Butterfield D. A., Halliwell B. (2019): Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease, Nature Reviews Neuroscience 20(3), 148-160. https://doi.org/10.1038/s41583-019-0132-6
Pandey K. B., Rizvi S. I. (2009): Plant polyphenols as dietary antioxidants in human health and disease, Oxidative medicine and cellular longevity 2(5), 270-278. https://doi.org/10.4161/oxim.2.5.9498
Shahidi F., Ambigaipalan P. (2015): Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review, Journal of functional foods 18, 820-897. https://doi.org/10.1016/j.jff.2015.06.018
Phan H. T., Samarat K., Takamura Y., Azo-Oussou A. F., Nakazono Y., Vestergaard M. D. C. (2019): Polyphenols modulate alzheimer’s amyloid beta aggregation in a structure-dependent manner, Nutrients 11(4), 756. https://doi.org/10.3390/nu11040756
Ebrahimi A., Schluesener H. (2012): Natural polyphenols against neurodegenerative disorders: potentials and pitfalls, Ageing research reviews 11(2), 329-345. https://doi.org/10.1016/j.arr.2012.01.006
Bastianetto S., Krantic S., Quirion R. (2008): Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer's disease, Mini reviews in medicinal chemistry 8(5), 429-435. https://doi.org/10.2174/138955708784223512
Bhullar K. S., Rupasinghe H. P. (2013): Polyphenols: multipotent therapeutic agents in neurodegenerative diseases, Oxidative medicine and cellular longevity 2013. https://doi.org/10.1155/2013/891748
Zhang H. Y. (2007): Can food-derived multipotent agents reduce the risk of Alzheimer's disease, Trends in food science & technology 18(9), 492-495. https://doi.org/10.1016/j.tifs.2007.04.008
Lee J. W., Lee Y. K., Ban J. O., Ha T. Y., Yun Y. P., Han S. B., ..., Hong J. T. (2009): Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κ B pathways in mice, The Journal of nutrition 139(10), 1987-1993. https://doi.org/10.3945/jn.109.109785
Kim J., Lee H. J., Lee K. W. (2010): Naturally occurring phytochemicals for the prevention of Alzheimer’s disease, Journal of neurochemistry 112(6), 1415-1430. https://doi.org/10.1111/j.1471-4159.2009.06562.x
Zheng Q., Kebede M. T., Kemeh M. M., Islam S., Lee B., Bleck S. D., ..., Lazo N. D. (2019): Inhibition of the self-assembly of Aβ and of tau by polyphenols: Mechanistic studies, Molecules 24(12), 2316. https://doi.org/10.3390/molecules24122316
Porat Y., Mazor Y., Efrat S., Gazit E. (2004): Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions, Biochemistry 43(45), 14454-14462. https://doi.org/10.1021/bi048582a
Hills Jr R. D., Brooks III C. L. (2007): Hydrophobic cooperativity as a mechanism for amyloid nucleation, Journal of molecular biology 368(3), 894-901. https://doi.org/10.1016/j.jmb.2007.02.043
Kumar N., Goel N. (2019): Phenolic acids: Natural versatile molecules with promising therapeutic applications, Biotechnology Reports 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
Tsao R., Deng Z. (2004): Separation procedures for naturally occurring antioxidant phytochemicals, Journal of chromatography B 812(1-2), 85-99. https://doi.org/10.1016/j.jchromb.2004.09.028
Zhang L., Li Y., Liang Y., Liang K., Zhang F., Xu T., ..., Lu B. (2019): Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China, Food chemistry 276, 538-546. https://doi.org/10.1016/j.foodchem.2018.10.074
Heleno S. A., Martins A., Queiroz M. J. R., Ferreira I. C. (2015): Bioactivity of phenolic acids: Metabolites versus parent compounds: A review, Food chemistry 173, 501-513. https://doi.org/10.1016/j.foodchem.2014.10.057
Sevgi K., Tepe B., Sarikurkcu C. (2015): Antioxidant and DNA damage protection potentials of selected phenolic acids, Food and Chemical Toxicology 77, 12-21. https://doi.org/10.1016/j.fct.2014.12.006
Rao Y., Zhao X., Li Z., Huang J. (2018): Phenolic acids induced growth of 3D ordered gold nanoshell composite array as sensitive SERS nanosensor for antioxidant capacity assay, Talanta 190, 174-181. https://doi.org/10.1016/j.talanta.2018.07.069
Li T., Li X., Dai T., Hu P., Niu X., Liu C., Chen J. (2020): Binding mechanism and antioxidant capacity of selected phenolic acid-β-casein complexes, Food Research International 129, 108802. https://doi.org/10.1016/j.foodres.2019.108802
Chang W., Huang D., Lo Y. M., Tee Q., Kuo P., Wu J. S., ..., Shen S. (2019): Protective effect of caffeic acid against Alzheimer’s disease pathogenesis via modulating cerebral insulin signaling, β-amyloid accumulation, and synaptic plasticity in hyperinsulinemic rats, Journal of agricultural and food chemistry 67(27), 7684-7693. https://doi.org/10.1021/acs.jafc.9b02078
Mori T., Koyama N., Yokoo T., Segawa T., Maeda M., Sawmiller D., ..., Town T. (2020): Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice, Journal of Biological Chemistry 295(48), 16251-16266. ps://doi.org/10.1074/jbc.RA119.012330
Yu M., Chen X., Liu J., Ma Q., Zhuo Z., Chen H., ..., Hou S. T. (2019): Gallic acid disruption of Aβ1–42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse, Neurobiology of Disease 124, 67-80. https://doi.org/10.1016/j.nbd.2018.11.009
Ogunlade B., Adelakun S. A., Agie J. A. (2020): Nutritional supplementation of gallic acid ameliorates Alzheimer-type hippocampal neurodegeneration and cognitive impairment induced by aluminum chloride exposure in adult Wistar rats, Drug and chemical toxicology 1-12. https://doi.org/10.1080/01480545.2020.1754849
Shan Y., Wang D. D., Xu Y. X., Wang C., Cao L., Liu Y. S., Zhu C. Q. (2016): Aging as a precipitating factor in chronic restraint stress-induced tau aggregation pathology, and the protective effects of rosmarinic acid, Journal of Alzheimer's Disease 49(3), 829-844. https://doi.org/10.3233/JAD-150486
Mori T., Rezai-Zadeh K., Koyama N., Arendash G. W., Yamaguchi H., Kakuda N., ..., Town T. (2012): Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice, Journal of Biological chemistry 287(9), 6912-6927. https://doi.org/10.1074/jbc.M111.294025
Hornedo-Ortega R., Alvarez-Fernandez M. A., Cerezo A. B., Richard T., Troncoso A. M., Garcia-Parrilla M. C. (2016): Protocatechuic acid: inhibition of fibril formation, destabilization of preformed fibrils of amyloid-β and α-synuclein, and neuroprotection, Journal of agricultural and food chemistry 64(41), 7722-7732. https://doi.org/10.1021/acs.jafc.6b03217
Guven M., Sehitoglu M. H., Yuksel Y., Tokmak M., Aras A. B., Akman T., ..., Cosar M. (2015): The neuroprotective effect of coumaric acid on spinal cord ischemia/reperfusion injury in rats, Inflammation 38(5), 1986-1995. https://doi.org/10.1007/s10753-015-0179-0
Lee H. E., Kim D. H., Park S. J., Kim J. M., Lee Y. W., Jung J. M., ..., Ryu J. H. (2012): Neuroprotective effect of sinapic acid in a mouse model of amyloid β1–42 protein-induced Alzheimer's disease, Pharmacology Biochemistry and Behavior 103(2), 260-266. https://doi.org/10.1016/j.pbb.2012.08.015
Jha A. B., Panchal S. S., Shah A. (2018): Ellagic acid: insights into its neuroprotective and cognitive enhancement effects in sporadic Alzheimer's disease, Pharmacology Biochemistry and Behavior 175, 33-46. https://doi.org/10.1016/j.pbb.2018.08.007
Ogut E., Akcay G., Yildirim F. B., Derin N., Aslan M. (2020): The influence of syringic acid treatment on total dopamine levels of the hippocampus and on cognitive behavioral skills, International Journal of Neuroscience 1-9. https://doi.org/10.1080/00207454.2020.1849191
Cui Q., Du R., Liu M., Rong L. (2020): Lignans and their derivatives from plants as antivirals, Molecules 25(1), 183. https://doi.org/10.3390/molecules25010183
Umezawa T. (2003): Diversity in lignan biosynthesis, Phytochemistry Reviews 2(3), 371-390. https://doi.org/10.1023/B:PHYT.0000045487.02836.32
Durazzo A., Lucarini M., Camilli E., Marconi S., Gabrielli P., Lisciani S., ..., Marletta L. (2018): Dietary lignans: definition, description and research trends in databases development, Molecules 23(12), 3251. https://doi.org/10.3390/molecules23123251
Hyvärinen H. K., Pihlava J. M., Hiidenhovi J. A., Hietaniemi V., Korhonen, H. J., Ryhänen, E. L. (2006): Effect of processing and storage on the stability of flaxseed lignan added to dairy products, Journal of Agricultural and Food Chemistry 54(23), 8788-8792. https://doi.org/10.1021/jf061285n
Zálešák F., Bon D. J. Y. D., Pospíšil J. (2019): Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances, Pharmacological Research 146, 104284. https://doi.org/10.1016/j.phrs.2019.104284
Kantham S., Chan S., McColl G., Miles J. A., Veliyath S. K., Deora G. S., ..., Ross B. P. (2017): Effect of the biphenyl neolignan honokiol on Aβ42-induced toxicity in Caenorhabditis elegans, Aβ42 fibrillation, cholinesterase activity, DPPH radicals, and iron (II) chelation, ACS Chemical Neuroscience 8(9), 1901-1912. https://doi.org/10.1021/acschemneuro.7b00071
Qi Y., Dou D. Q., Jiang H., Zhang B. B., Qin W. Y., Kang K., ..., Jia D. (2017): Arctigenin attenuates learning and memory deficits through PI3k/Akt/GSK-3β pathway reducing tau hyperphosphorylation in Aβ-induced AD mice, Planta Medica 83(01/02), 51-56. https://doi.org/10.1055/s-0042-107471
Somani G. S., Nahire M. S., Parikh A. D., Mulik M. B., Ghumatkar P. J., Laddha K. S., Sathaye S. (2017): Neuroprotective effect of Cubebin: A dibenzylbutyrolactone lignan on scopolamine-induced amnesia in mice, The Indian journal of medical research 146(2), 255. https://doi.org/10.4103/ijmr.IJMR_156_14
Gu M. Y., Kim J., Yang, H. O. (2016): The neuroprotective effects of justicidin A on amyloid beta25–35-induced neuronal cell death through inhibition of Tau hyperphosphorylation and induction of autophagy in SH-SY5Y cells, Neurochemical research 41(6), 1458-1467. https://doi.org/10.1007/s11064-016-1857-5
Huang X. X., Xu Y., Bai M., Zhou L., Song S. J., Wang X. B. (2018): Lignans from the seeds of Chinese hawthorn (Crataegus pinnatifida var. major NE Br.) against β-amyloid aggregation, Natural product research 32(14), 1706-1713. https://doi.org/10.1080/14786419.2017.1399378
Yang B. Y., Guo J. T., Li Z. Y., Wang C. F., Wang Z. B., Wang Q. H., Kuang H. X. (2016): New thymoquinol glycosides and neuroprotective dibenzocyclooctane lignans from the rattan stems of Schisandra chinensis, Chemistry & Biodiversity 13(9), 1118-1125. https://doi.org/10.1002/cbdv.201500311
Espín J. C., García-Conesa M. T., Tomás-Barberán F. A. (2007): Nutraceuticals: facts and fiction, Phytochemistry 68(22-24), 2986-3008. https://doi.org/10.1016/j.phytochem.2007.09.014
Shen T., Wang X. N., Lou H. X. (2009): Natural stilbenes: an overview, Natural product reports 26(7), 916-935. https://doi.org/10.1039/B905960A
Skowyra M., Falguera V., Gallego G., Peiró S., Almajano M. P. (2014): Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions, Journal of the Science of Food and Agriculture 94(5), 911-918. https://doi.org/10.1002/jsfa.6335
Vincenzi S., Tomasi D., Gaiotti F., Lovat L., Giacosa S., Torchio F., ..., Rolle L. (2013): Comparative study of the resveratrol content of twenty-one Italian red grape varieties, South African Journal of Enology and Viticulture 34(1), 30-35. https://doi.org/10.21548/34-1-1078
Aslam S. N., Stevenson P. C., Kokubun T., Hall D. R. (2009): Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes, Microbiological Research 164(2), 191-195. https://doi.org/10.1016/j.micres.2006.11.012
Tellone E., Galtieri A., Russo A., Giardina B., Ficarra S. (2015): Resveratrol: a focus on several neurodegenerative diseases, Oxidative medicine and cellular longevity 2015. https://doi.org/10.1155/2015/392169
Porquet D., Casadesús G., Bayod S., Vicente A., Canudas A. M., Vilaplana J., ..., Del Valle J. (2013): Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8, Age 35(5), 1851-1865. https://doi.org/10.1007/s11357-012-9489-4
Karuppagounder S. S., Pinto J. T., Xu H., Chen H. L., Beal M. F., Gibson G. E. (2009): Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease, Neurochemistry international 54(2), 111-118. https://doi.org/10.1016/j.neuint.2008.10.008
Caillaud M., Guillard J., Richard D., Milin S., Chassaing D., Paccalin M., ..., Rioux Bilan A. (2019): Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model, PLoS One 14(2), e0212663. https://doi.org/10.1371/journal.pone.0212663
Hu J., Lin T., Gao Y., Xu J., Jiang C., Wang G., ..., Zhang Y. W. (2015): The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation, PLoS One 10(1), e0115973. https://doi.org/10.1371/journal.pone.0115973
Chang J., Rimando A., Pallas M., Camins A., Porquet D., Reeves J., ..., Casadesus, G. (2012): Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease, Neurobiology of aging 33(9), 2062-2071. https://doi.org/10.1016/j.neurobiolaging.2011.08.015
Hou Y., Xie G., Miao F., Ding L., Mou Y., Wang L., ..., Wu C. (2014): Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice, Progress in Neuro-Psychopharmacology and Biological Psychiatry 54, 92-102. https://doi.org/10.1016/j.pnpbp.2014.03.015
Boušová I., Skálová L. (2012): Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences, Drug metabolism reviews 44(4), 267-286. https://doi.org/10.3109/03602532.2012.713969
Wildman R. E., Wildman R., Wallace T. C. (2016): Handbook of nutraceuticals and functional foods, CRC press. https://doi.org/10.1201/9781420006186
Corradini E., Foglia P., Giansanti P., Gubbiotti R., Samperi R., Lagana A. (2011): Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants, Natural product research 25(5), 469-495. https://doi.org/10.1080/14786419.2010.482054
Crozier A., Jaganath I. B., Clifford M. N. (2009): Dietary phenolics: chemistry, bioavailability and effects on health, Natural product reports 26(8), 1001-1043. https://doi.org/10.1039/B802662A
Russo M., Spagnuolo C., Tedesco I., Bilotto S., Russo G. L. (2012): The flavonoid quercetin in disease prevention and therapy: facts and fancies, Biochemical pharmacology 83(1), 6-15. https://doi.org/10.1016/j.bcp.2011.08.010
Perez-Vizcaino F., Duarte J. (2010): Flavonols and cardiovascular disease, Molecular aspects of medicine 31(6), 478-494. https://doi.org/10.1016/j.mam.2010.09.002
Airoldi C., La Ferla B., D'Orazio G., Ciaramelli C., Palmioli A. (2018): Flavonoids in the treatment of Alzheimer's and other neurodegenerative diseases, Current medicinal chemistry 25(27), 3228-3246. https://doi.org/10.2174/0929867325666180209132125
Jiménez-Aliaga K., Bermejo-Bescós P., Benedí J., Martín-Aragón S. (2011): Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells, Life sciences 89(25-26), 939-945. https://doi.org/10.1016/j.lfs.2011.09.023
Ho L., Ferruzzi M. G., Janle E. M., Wang J., Gong B., Chen T. Y., ..., Pasinetti G. M. (2013): Identification of brain‐targeted bioactive dietary quercetin‐3‐O‐glucuronide as a novel intervention for Alzheimer's disease, The FASEB Journal 27(2), 769-781. https://doi.org/10.1096/fj.12-212118
DeToma A. S., Choi J. S., Braymer J. J., Lim M. H. (2011): Myricetin: a naturally occurring regulator of metal‐induced amyloid‐β aggregation and neurotoxicity, ChemBioChem 12(8), 1198-1201. https://doi.org/10.1002/cbic.201000790
Sharoar M. G., Thapa A., Shahnawaz M., Ramasamy V. S., Woo E. R., Shin S. Y., Park I. S. (2012): Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates, Journal of biomedical science 19(1), 1-13. https://doi.org/10.1186/1423-0127-19-104
Ahmad A., Ali T., Park H. Y., Badshah H., Rehman S. U., Kim M. O. (2017): Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice, Molecular neurobiology 54(3), 2269-2285. https://doi.org/10.1007/s12035-016-9795-4
Tarozzi A., Morroni F., Merlicco A., Bolondi C., Teti G., Falconi M., ..., Hrelia P. (2010): Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity, Neuroscience Letters 473(2), 72-76. https://doi.org/10.1016/j.neulet.2010.02.006
Wang D., Gao K., Li X., Shen X., Zhang X., Ma C., ..., Zhang L. (2012): Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimer's disease, Pharmacology Biochemistry and Behavior 102(1), 13-20. https://doi.org/10.1016/j.pbb.2012.03.013
Balez R., Steiner N., Engel M., Muñoz S. S., Lum J. S., Wu Y., ..., Ooi L. (2016): Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease, Scientific reports 6(1), 1-16. https://doi.org/10.1038/srep31450
Bieschke J., Russ J., Friedrich R. P., Ehrnhoefer D. E., Wobst H., Neugebauer K., Wanker E. E. (2010): EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity, Proceedings of the National Academy of Sciences 107(17), 7710-7715. https://doi.org/10.1073/pnas.0910723107
Downloads
Published
How to Cite
Issue
Section
License
Copyright (C) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.