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Abstract 

Agricultural production in greenhouses shows a rapid growth in many parts of the world. This form of intensive farming requires a 

large amount of water and fertilizers, and can have a severe impact on the environment. The number of greenhouses and their location 

is important for applications like spatial planning, environmental protection, agricultural statistics and taxation. Therefore, with this 

study we aim to develop a methodology to detect plastic greenhouses in remote sensing data using machine learning algorithms. 

This research presents the results of the use of a convolutional neural network for automatic object detection of plastic greenhouses in 

high resolution remotely sensed data within a GIS environment with a graphical interface to advanced algorithms. The convolutional 

neural network is trained with manually digitized greenhouses and RGB images downloaded from Google Earth. The ArcGIS Pro 

geographic information system provides access to many of the most advanced python-based machine learning environments like Keras 

– TensorFlow, PyTorch, fastai and Scikit-learn. These libraries can be accessed via a graphical interface within the GIS environment. 

Our research evaluated the results of training and inference of three different convolutional neural networks. Experiments were 

executed with many settings for the backbone models and hyperparameters. The performance of the three models in terms of detection 

accuracy and time required for training was compared. The model based on the VGG_11 backbone model (with dropout) resulted in 

an average accuracy of 79.2% with a relatively short training time of 90 minutes, the much more complex DenseNet121 model was 

trained in 16.5 hours and showed a result of 79.1%, while the ResNet18 based model showed an average accuracy of 83.1% with a 

training time of 3.5 hours. 
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INTRODUCTION 

In recent years, agricultural production in greenhouses 

showed a rapid growth (Agüera and Liu, 2009; Wu et al., 

2016; Nemmaoui et al., 2019). In many arid and semi-

arid countries, plastic greenhouses form a large share in 

the total number of greenhouses, since they are more 

affordable and can be used temporary as well. Plastic 

greenhouses are made of a partly transparent plastic 

cover to be able to control the environmental and 

growing conditions inside the greenhouse. It is important 

to monitor their spatial distribution, since this form of 

intensive farming requires large amounts of water and 

fertilizers and can have a severe impact on the 

environment. Estimation of the share of plastic 

greenhouses in the total agricultural activities can be 

performed by directly counting the number of 

greenhouses. This is slow, labor intensive and 

consequently expensive, therefore, it makes sense to 

apply remote sensing data-based algorithms to detect 

them. Apart from spatial planning and environmental 

protection, another reason to acquire knowledge of the 

number and location of greenhouses is that their 

registration is obligatory for taxation purposes. 

Research on the classification of plastic or glass 

greenhouses using very high to medium resolution 

(multi-spectral) remote sensing data and methodologies 

has been published earlier. Wu et al. (2016) applied 

random forest (RF) and support vector machine (SVM) 

on medium resolution multispectral data. Also, Yang et 

al. (2017) used medium resolution data, but they 

presented an index-based approach resulting in an 

overall accuracy of 91%. Koc-San (2013) reported high 

accuracies of classification of glass and plastic 

greenhouses using maximum likelihood (ML), RF and 

SVM methods based on Worldview-2 very high-

resolution data. Agüera et al. (2008) received promising 

results when applying texture analysis combined with 

ML on very high-resolution satellite imagery. Agüera 

and Liu (2009) used ML classification to automatically 

delineate greenhouses. They report results with medium 

accuracy. Supervised classification based on a 

combination of orthophotos and Landsat data was 

proposed by González-Yebra et al. (2018). Novelli et al. 

(2016) used a combination of Landsat and Sentinel-2. 

They classified medium resolution data using Object 

Based Image Analysis (OBIA) and RF. Accuracies 

ranged between 89 and 93%. Very high-resolution 

satellite imagery was used by Nemmaoui et al. (2019) to 

derive surface and terrain models to extract plastic 

greenhouses. They report very high accuracies of up to 

98%. Most recently, Yang et al. (2021) published a 
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manual approach to identify greenhouses to study urban 

fringe based on imagery downloaded from Google Earth. 

The term artificial intelligence (AI) was first used 

in 1955 (McCarthy et al., 1955). Given that intelligence 

is difficult to define, this term is not easy to define either. 

It can be formulated as a process that mimics human 

abilities and behavior according to pre-programmed 

rules (Nilsson, 1980; Simon, 1995). Machine learning 

(ML) is a part of artificial intelligence that, based on 

collected data, can learn and develop itself in an iterative 

way using pre-programmed rules (Michie, 1968). 

Artificial Neural Networks (ANN) are a type of ML 

algorithms loosely based on the biological functioning 

of the brain. Artificial neurons process and transmit 

many input signals to a large number of neighboring 

neurons. The neurons are stored in layers, the final layer 

collects the signals and processes them to an output 

signal, with is the result of the network. The network 

learns from input and output data pairs and stores their 

combined relationship as weights (Müller et al., 1995). 

Deep learning is a group of ML algorithms that uses 

ANNs with many hidden layers. The more hidden layers, 

the deeper and more complex the neural network and the 

more complicated tasks it can potentially solve. In the 

present age, deep learning has become widespread and 

makes it possible to process large data sets that are 

otherwise often too big to manage. Examples of 

applications of deep learning include face recognition, 

image recognition, or self-driving vehicles (Goodfellow 

et al., 2016). 

The current revolution in deep learning algorithms 

for computer vision also provides opportunities to 

improve analysis of remote sensing data. Numerous 

studies have been published on the classification of 

medium (e.g., Watanabe et al., 2018; Gallwey et al., 

2020; Rai et al., 2020; Virnodkar et al. 2020) and high 

resolution (e.g. Flood et al., 2019; Schiefer et al., 2020; 

Zhang et al., 2020) satellite images using deep learning 

methods (Kattenborn et al., 2021). Detection of 

individual objects in the imagery is not as common as 

classification but has been published as well (Ding et al., 

2018; Jiang et al., 2019; Guo et al., 2020; Pi et al., 2020). 

The difference between the two results is important; 

classification provides a label for every pixel, specifying 

the class it belongs to. This is the most common 

approach when converting remote sensing data to 

thematic maps. On the contrary, object detection 

provides an output layer on top of the original remote 

sensing image where the objects of interest are shown 

with a square bounding box around them indicating their 

precise location and accuracy estimation. 

The aim of our research is to evaluate if the current 

innovations in machine learning based technologies can 

be applied to detect plastic greenhouses. The presented 

methodology is based on object detection using a 

convolutional neural network (CNN). A CNN is an ANN 

that is designed to learn the spatial features, e.g. edges, 

corners, textures, or more abstract shapes, that best 

describes the target class or quantity. Like other ANNs, 

CNNs are based on neurons that are organized in layers 

and are connected through weights and biases. The 

initial layer is the input layer, e.g. remote sensing data, 

and the last layer is the predicted output (Kattenborn et 

al., 2021). 

In recent years, accessibility to machine learning 

algorithms and deep learning models in particular has 

been improved by implementations in user-friendly 

environments under Python or R. A next step in the 

development towards easier excess to the algorithms is 

the implementation of graphical user interfaces on top of 

the functionality. One implementation is the Deep 

learning toolset in ArcGIS Pro (ESRI, 2021) which 

implements third-party deep learning frameworks – such 

as Keras – TensorFlow (Abadi et al., 2015; Chollet, 

2015), PyTorch (Paszke et al., 2019), fastai (Howard and 

Gugger, 2020) and Scikit-learn (Pedregosa et al., 2011). 

In this study, we present a methodology based on 

freely available images and a convolutional network to 

detect plastic greenhouses in an area in the south of 

Hungary. The area is mainly agricultural with a large 

amount of tunnel shaped plastic greenhouses. The earlier 

mentioned studies applied deep learning techniques for 

classification of high resolution remote sensing data, but 

none of them used CNN for object detection based on 

data from Google Earth. 

STUDY AREA 

A 230 km2 area in the south east of the Great Hungarian 

Plain, near the town of Szeged (Fig. 1) has been selected 

to test the CNN algorithm. The area is mainly agricultural 

and has a large number of greenhouses. Other main land 

use/land cover classes in the area are forest, urban/build 

up and some water bodies. Most of the area has 

chernozem and sandy soils, but in some areas arenosol can 

be found. The sandy soils absorb water quickly causing 

the soil to dry out and reduce its fertility. The area suffers 

from high air pollution and dust content. In the 1750s, 

locust tree (Robinia pseudoacacia) was introduced in the 

region as an ornamental plant. The invasive species 

spread quickly through the region, and helps to reduce 

wind erosion, but it also reduces the nutrients in the soil. 

With 400-450 mm, the annual rainfall is low compared to 

the mean precipitation (600-700 mm) of the country 

(Mezősi, 2011). 

DATA AND METHODS 

The imagery used as input data for the presented detection 

algorithm was extracted from Google Earth. The high-

resolution data is a georeferenced red-green-blue (RGB) 

image collected by CNES/Airbus in August 2020. The 

image was downloaded using the Tile+ extension in 

QGIS. 

The concept of convolutional neural networks was 

introduced in the 1980s by Yann LeCun (LeCun et al., 

1990). CNNs differ from fully connected ANNs by 

having each neuron being connected to only a limited 

number of neurons in the previous layer. CNNs assume 

that the input is an image and look for features through a 

kernel. The detection is performed through convolution 

between the input and the kernel thus the term 

convolutional neural networks. The kernels form a  
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Fig. 1 Location of the study area 
 

convolutional filter, and a set of stacked convolutional 

filters makes a convolutional layer (Fig. 2). Convolutional 

layers are followed by activation functions which 

introduce nonlinear behavior to the model. Each 

convolutional layer extracts features with increasing 

complexity from the input layer. After each convolutional 

layer, a pooling layer extracts the most prominent features 

and reduces the resolution of the previous input. A CNN 

thus contains a stack of convolutional layers followed by 

activation functions and pooling layers, and finally an 

addition of one or more Fully Connected (FC) layers. FC 

layers form an ANN head on top of the CNN that is used 

to classify the CNN output into a set of finite classes 

(Davies, 2018). In case of object detection, objects are not 

only classified, but their locations are indicated with 

bounding boxes as well (Liu et al., 2016). 

The methodology to detect plastic greenhouses can 

be separated in 6 sequential steps. The first step is to 

download of the input image. The second is the generation 

of training and validation samples and the creation of 

image chips, and the third is the creation of the model 

architecture. The next step is the training of the model 

based on the training data. Then, the model parameters are 

fine-tuned based on the validation data set. The sixth and 

final step is the inference of the trained model with the 

total image. 

The detection of greenhouses requires very high 

resolution data with at least 3 layers. This type of data can 

be provided by drones, aerial photographs or very high 

resolution satellite images. Since it is the aim of our 

research to apply the methodology on a large area, images 

collected by drones are not an option. Google Earth 

provides a source of high-resolution aerial photographs 

and satellite images that can be downloaded for free for 

non-commercial use. Therefore, an RGB image was 

downloaded from Google Earth with a resolution of 2000 

dpi. This resulted in a 1 gigabyte three layer TIF file with 

an approximate spatial resolution of 50 cm. Selection 

criteria for the image were cloud cover percentage, spatial 

resolution and number of greenhouses. The extracted 

image covers an area of 230 km2. 

During the second step, samples of plastic 

greenhouses were identified in multiple subsets of the 

image. In each subset, all greenhouses were digitized 

manually to make sure that the model would not be trained 

with pixels that belong to greenhouses, but that were 

labeled as non-greenhouse pixels. In total, 2352 

greenhouse samples were created. The higher the spatial 

resolution of the image, the easier is the identification of 

individual greenhouses; the downloaded image was of 

sufficient spatial resolution. The selection of the samples 

is of decisive important for the result of the detection of 

greenhouses. Using rotation, it is possible to perform data 

augmentation, with is the artificial creation of more 

training samples by capturing the sample created by the 

user at multiple angles. 

The samples were used to generate training data in 

the PASCAL visual object classes meta data format 

(Everingham et al., 2010) and serve as input for the 

process of sub-setting the total image into individual 

chips. Only chips with (a part of) at least one sample in it 

were stored. With each chip an .xml file is produced that 

stores the location of the sample within the chip. 

The training data was used as input for the training 

phase, where the algorithm aims to detect the 

 

 
Fig. 2  Classification using a convolution neural network 
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greenhouses. During object detection, the algorithm uses 

bounding boxes to delimit the objects’ location. The 

purpose of the training is to minimize the difference 

between the real and the modeled bounding boxes. In case 

there are several different objects in the image, all 

possible positions and box sizes need to be evaluated, 

which is calculation intensive. For this reason, originally, 

the R-CNN method was developed, which provides 

region suggestions. Single-shot detectors are an improved 

detection algorithm and are designed to skip making 

region suggestions and solve classification and regression 

tasks in one step, making them more efficient and faster. 

The two best known algorithms are YOLO (You Look 

Only Once) and SSD (Single Shot Detector) (Liu et al., 

2016). The latter is used this research, because it is the 

most accurate and fastest (Poirson et al., 2016). Training 

performance can be increased considerably by applying 

transfer training based on a model with many parameters 

that was pre-trained for a different task (Howard and 

Gugger, 2020). A large number of pre-trained models can 

be downloaded via the internet. Each model has its 

specific architecture, among others they differ in number 

of layers and filter sizes. They can also vary in the type of 

data that was used to train them. The selection of the 

backbone model determines the architecture of the model 

used for the training. Many experiments were carried out 

to determine the best backbone model. In the presented 

research, we evaluated the ResNet18, DensNet121 and 

VVG_11 models for training and inference. The learning 

rate is an important parameter during this phase. It 

determines the size of the adaptation of the weights during 

one pass of the training data through the network. If the 

learning rate is too low, the optimal solution for the model 

may not be found, if it is too high the model may take too 

long to converge, and training will never end. The best 

learning rate can be found manually, but in ArcGIS Pro, 

it is possible to use fast.ai’s learning rate finder, which 

suggests an optimal learning rate. The maximum number 

of epochs is used to specify the maximum number of 

times the training data is used to adapt the weights of the 

network and therefore limits the training time. The batch 

size is a hyperparameter that defines the number of 

samples to work through before updating the model 

parameters. Other parameters are the number of grids cell 

in which the image is divided, and the size and ratio 

parameters for the detection boxes. 

Once the model and hyperparameters were 

determined, they were stored and used for inference on 

the image of the complete area. During the inference, 

parameters for the confidence threshold and non 

maximum suppression (nms) need to be determined. The 

confidence threshold is the minimum confidence that is 

required for an object to be stored. For example, in our 

research a setting of 0.5 was used, which means that the 

algorithm must be at least 50% confidence that it has 

found a plastic greenhouse. Objects with a lower 

confidence are ignored for further processing. The output 

of the inference gives many overlapping boxes with 

different confidences. The nms parameters is used to 

remove overlapping boxes of the same objects and to 

determine how much overlap is allowed between adjacent 

boxes. The plastic greenhouses in the study area are 

located close to each other, therefore a 40% overlap 

setting was used in this research. 

Each step of the workflow to detect plastic 

greenhouses was performed using the Deep learning 

toolset of ArcGIS Pro 2.7. The separate tools for the 

creation of samples, export of image chips, and the 

training and inference of the model provide a user-

friendly interface to the complex algorithms that are used 

to detect the objects (ESRI, 2021). To be able to use the 

toolset, an ArcGIS Pro license is required, and an open-

source deep learning environment based on python 

implementations of well-known machine learning 

libraries like Keras – TensorFlow, PyTorch, fastai and 

Scikit-learn needs to be installed. Although, it is possible 

to train the models using a CPU, it is highly recommended 

to use a GPU. 

RESULTS AND DISCUSSION 

For the training in total 2352 plastic greenhouses were 

digitized with an average size of 200 m2. These were 

used to create 6228 partly overlapping image chips. Each 

image chip had a size of 256 x 256 pixels and the average 

number of greenhouses per chip was 5. Examples of 

image chips are shown in Figure 3. 

Many settings of the hyperparameters for the 

training were tested, and the optimum combination was 

reached with 50 iterations, a batch size of 8, grid values 

of 4, 2, and 1, zoom values of 0.7, 1.0, 1.3 and [1,1], [1, 

0.5], [0.5, 1] for the ratio values. The learning rate was 

set to automatic, and 20% of the data was used for model 

validation. During the training phase, numerous 

experiments have been executed to determine the 

architecture of the model and the values of the 

hyperparameters. All training and inference tests were 

executed on a PC with and Intel Core I5, 8th generation 

processor, 8 GB RAM and a Geforce GTX 1050 

graphics card. First, backbone models ResNet18, 

ResNet34, ResNet50 and DenseNet121 were tested as 

architectures for the training. 

A subset of the result of the training with the 

ResNet18 backbone model is shown in Figure 4. 

Obviously, the larger the model, the longer the time 

required for training. In our case, it took 16h 31m to train 

the large DenseNet121 model, while the ResNet18 

model with the same parameters took only 3h 24m. 

 

        
 

Fig. 3 Image chips with multiple samples of plastic greenhouses 
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Fig. 4 Training results of model with Resnet18 backbone, 

at the left the input sample is shown, while the right image 

shows the detected result 

 

The main problem with the larger backbone models was 

overfitting, therefore more samples were added to the 

training set by data augmentation, where the original 

training samples were rotated with 45° and 180° angles. 

DenseNet121, with 121 layers was finally trained with 

6228 chips but did not provide better detection. This 

model gave the highest training accuracy of 79.1%. 

Also, the ResNet18 model was trained with the same 

sample set, acquired by data augmentation. The 

ResNet18 training with 50 iterations and a batch size of 

8 and resulted in an average accuracy of 80.1%. Figure 

5 shows the training and validation loss and clearly 

proves that the model is converging to an optimal 

solution. 

In the first test, the VGG_11 backbone model was 

evaluated for the training. This model has only 11 layers 

and is therefore much faster to train. The training and 

validation loss plot is shown in Figure 6. The training 

took 90 minutes and the maximum number of epochs 

was set to 25, the number of samples was 5168. 

To prevent overfitting of the VGG_11 model, 

different settings for dropout were tested. Dropout is a 

regularization method where randomly a part of the 

output of a layer is ignored and not read into the next 

layer. A value of 0.3 (30% of the data is ignored) gave 

the best result (Fig. 7). 

The results of inference shown here are all executed 

on the same smaller test area. The main consideration for 

the selection of the area was that there are many plastic 

greenhouses that were not included in the training data 

set, so that it is possible to assess the quality of the 

inference. Additionally, it was important to select as 

many different types of greenhouses as possible 

(different in size, color and damage) to be able to 

evaluate the capabilities of the models to detect all 

plastic greenhouses. Figure 8 shows the inference results 

of the VGG_11 model. 

The model successfully found the large majority of 

objects of interest. The red symbols indicate the 222 

greenhouses that the model detected. Some objects were 

detected by this model, that are not a plastic greenhouse. 

These are indicated in black in Figure 8. For example, 

the model also recognized large tents that are very 

similar in shape to greenhouses. The average accuracy 

of the bounding boxes detected during the inference 

using VGG_11 in the test area is 79.2%. 

The next backbone model used for inference was 

DenseNet121 (Fig. 9). The model showed a slight over 

fitting in the initial trials, but adaptation of the hyper 

parameters and enlarging the training set showed that the 

model can detect greenhouses successfully. As a result 

of the inference using the DenseNet121 model, 230 

plastic greenhouses were found in the test area. 

Comparing with the results of the VGG_11 model, it can 

be observed that the inference made with the 

DenseNet121 model is more accurate. DenseNet121 did 

not erroneously detected the large tents as plastic 

greenhouse unlike VGG_11 model (yellow circles in 

Fig. 9). The DenseNet121 model yielded an average of 

79.1% for the accuracy value. 

 
Fig. 5 Training and validation loss 

using the ResNet18 backbone and 2352 samples 

 

 
Fig. 6 Training and validation loss 

using the VGG_11 backbone 

 

 
Fig. 7 Training and validation loss 

using the VGG_11 with dropout 0.3 
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Finally, the results of the ResNet18 model are presented 

in Figure 10. During the first training, a higher learning 

rate of 0.03 was used, but this did not give satisfying 

results. Then, the training was performed with the 

learning rate finder, suggesting far lower rates that 

provided a much better result. For the presented 

inference, the ResNet18 model trained with the 

suggested learning rates was used. The manual learning 

rate setting resulted in a worse result, giving an average 

accuracy value of 78.3% and the model placed 225 

bounding boxes during detection. The most accurate 

result was achieved by the ResNet18, with the optimal 

learning rate. It gave an average accuracy of 83.1% for 

the detected 232 bounding boxes. Improvement over the 

DenseNet121 result is indicated in yellow. 

 
 

Fig. 8 Detection of plastic greenhouses on the test area using VGG_11 

 

 

 
 

Fig. 9 Detection of plastic greenhouses on the test area using DenseNet121 
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ArcGIS Pro provides a user-friendly environment 

to sophisticated deep learning algorithms. The dialogs 

hide the complexity of working with machine learning 

algorithms from the user, but to use the functionality 

optimally, it is required to have detailed knowledge of 

the hidden algorithms. This also helps to make efficient 

decisions on the many options that need to be specified 

during the creation of the training data, the training and 

the inference. Erroneous settings of the 

hyperparameters during training can easily result in 

models that never reach an optimal solution. 

The selection of the backbone model is of decisive 

importance for the CNN processing. The complexity of 

the model, combined with setting for the learning rate, 

batch size and maximum number of epochs determine 

the accuracy of the results and the time required to train 

the model. Often, it might be more efficient to allow a 

slightly lower accuracy over much better performance. 

The size and quality of the training data is another 

important condition for successful use of the deep 

learning functionality. Data augmentation is a powerful 

procedure to generate more training data without 

digitizing more examples. It also reduces the chance of 

overfitting, since more and different types of examples 

that may occur in other areas, are shown to the model. 

Detection of objects in remotely sensed images 

provides a different result than the classification results 

that are common in remote sensing studies. For this 

reason, it is difficult to compare the results of 

traditional classifications and object detection as 

presented in our research. Traditional classifications 

provide one class label for each pixel in the image, 

while object detection aims to detect all objects of 

interest and their locations in the image. The metrics 

used for the estimation of the accuracy are also 

different since the location of an object is not an output 

of classification algorithms. 

In the presented research, RGB channel images 

downloaded from Google Earth are used as input data. 

The limited number of channels is a disadvantage 

compared to other data sets, when the data would be 

used for traditional classification. The models used as 

backbone for the convolutional neural network model 

are trained with three channel data though and are 

therefore particularly suitable as input data. 

CONCLUSION 

The presented research explores the possibilities for 

detection of plastic greenhouses in an agricultural area 

in the south east of Hungary using freely available high 

resolution satellite imagery and a convolutional neural 

network. The aim was to use state of the art deep 

learning techniques without the need to go into the 

depths of writing code, therefore we used the recent 

ArcGIS Pro deep learning implementation. This user-

friendly environment allows to experiment with many 

setting for creation of the training data, the backbone 

model, the training, and the inference. It also provides 

feedback to the user on the success of the training. The 

connection between the deep learning algorithms and 

the GIS functionality of the software makes it easy to 

perform all steps in the detection of greenhouses in a 

spatial environment and display the results as maps and 

images. 

The results of the inference show that - with 

careful selection of the network architecture and hyper 

parameters - it is possible to achieve high accuracy 

output maps. The calculation intensive experimentation 

 
 

Fig. 10 Detection of plastic greenhouses on the test area using ResNet18 
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requires a high-performance computer. The use of pre-

trained backbone models is essential. 

We successfully tested a possibility to determine 

the number of plastic greenhouses and their locations 

based on freely available, high resolution data and we 

are optimistic that the technology will be used in the 

future for applications like statistics on agriculture, 

environmental impact studies and taxation purposes. 
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