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ABSTRACT 

The magnetization for dipolar fluids is studied treated separately at low and high external magnetic field. Canonical 

ensemble Monte Carlo simulations have been performed in dipolar hard sphere fluid in order to test these theoretical 

results. New expressions are introduced at low and high external field and ultimately the synthesized formula is given. 

The main difference in the structure of dipolar liquids at different external field is the average orientation of the formed 

chains. In case of infinitesimal external magnetic field there is no a well-specified direction, while at high enough 

external field actually the chains are parallel to this field. The present theory yields good result in the intermediate 

region as well where the most conspicuous failures are provided by the former theories. 
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1. INTRODUCTION 

1.1 The effective field 

There are several relevant theories for the magnetization of dipolar fluids. These differ from each other 

mainly that in the expression of magnetization that 

 
𝑀 = 𝜌𝑚𝐿 (

𝑚𝐻𝑒

𝑘𝐵𝑇
) (1) 

the 𝐻𝑒  effective field is determined differently. Hereinafter the 𝑚𝐻 𝑘𝐵𝑇⁄  type argument in the 𝐿 Langevin 

function will be denoted by 𝛼. The index of 𝛼 will be the same as index of 𝐻 magnetic field. In (1) 𝑀 is the 

magnetization, 𝜌 is the number density, 𝑚 is the dipole moment, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the 

temperature. According to the Langevin theory [1] the effective magnetic field is equal to the external 

magnetic field: 

 
𝐻𝑒 = 𝐻0 (2) 

i.e. it does not take into account the field strength from adjacent particles. In his forward theory, Weiss [2] 

has gave an implicit expression to 𝐻𝑒: 

 𝐻𝑒 = 𝐻0 +
4𝜋

3
𝜌𝑚𝐿(𝛼𝑒) (3) 

 

  



Vol. 12, No. 2  2018 

 

DOI: 10.14232/analecta.2018.2.1-12 

2 

 

Here the effective field is equal to the sum of external field and additional field from the surrounding 

particles. This leads to the outcome, that the effective field is not equal to zero when the external field is 

zero, which is obviously incorrect. Although Pschenichnikov [3] has made a small change in the argument 

of Langevin function, but the divergence disappeared: 

 
𝐻𝑒 = 𝐻0 +

4𝜋

3
𝜌𝑚𝐿(𝛼0) 

(4) 

Equation (4) describes well the magnetization at low density and dipole moment, although at low external 

field underestimates and at high external field overestimates the simulation data. Ivanov [4] completes the 

second term in (4) in order to that the results at low external magnetic field get closer to the simulations. 

This has more or less succeeded but in this case (5) even more overestimates the simulations at high 

external magnetic field: 

 𝐻𝑒 = 𝐻0 +
4𝜋

3
𝜌𝑚𝐿(𝛼0) [1 +

4𝜋

48

𝜕(𝜌𝑚𝐿(𝛼0))

𝜕𝐻0

] (5) 

On Fig. 1 the curves of effective field according to some former theory are presented in function of 

external field at four different values of density and dipole moment. Furthermore the simulation values of 

effective field are marked also by the help of (1) calculated from the simulation values of magnetization. 

Now and hereafter on the figures the reduced units are used, defined by these expressions: 𝜌∗ = 𝜌𝜎3, 

𝑚∗ = 𝑚 √𝜎3𝑘𝐵𝑇⁄ , 𝑀∗ = 𝑀√𝜎3 𝑘𝐵𝑇⁄ , 𝐻∗ = 𝐻√𝜎3 𝑘𝐵𝑇⁄ . (The 𝜎 is the diameter of particles of 

monodisperse dipolar hard sphere system.) 
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Figure 1. The values of effective magnetic field in function of external magnetic field in case of four former theories and 

simulation. 

It is clearly shown on Fig. 1, that in all four cases there are significant difference between the simulation 

and theoretical data for both large and small external field. As the external field and thus the effective field 

increases, in the magnetization this difference disappears ever since the magnetization goes to saturated. 

All three relevant theories (Weiss, Pshenichnikov, Ivanov) as shown in Fig. 2 lead to the same value of 

magnetization, when 𝐻0 → ∞. There are even more theories for the magnetization of dipolar fluids, which 

have approached the experimental and simulation values with more or less success [5-9]. 
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Figure 2. The values of magnetization curve in function of external magnetic field in case of four former theories and simulation. 

1.2 The closure of effective field at zero external field 

For the initial susceptibility of dense dipolar fluids recently Nagy [10] has given new theoretical results. 

The new method is based on that dipoles are chained already at zero external field. The chain and particle 

distribution can be calculated according to the geometric distribution. The chain distribution is 

 
𝑔𝑘 = 𝑞𝑝𝑘−1 (6) 

where 𝑝 is the probability of chaining between two adjacent, parallel particles, are under the influence of 

local magnetic field, while 𝑞 = 1 − 𝑝, and 𝑘 is the length of the chain. The particle distribution specifies 

the proportion of particles involved in 𝑘 length chains: 

 
ℎ𝑘 = 𝑞2𝑘𝑝𝑘−1 (7) 

According to this theory the initial magnetic susceptibility can be calculated as follows: 

 𝜒 =
1 + 𝑝

1 − 𝑝
𝜒𝐿 (1 +

4𝜋

3
𝜒𝐿) (8) 

where 𝜒𝐿 = 𝜌𝑚2 3𝑘𝐵𝑇⁄  is Langevin susceptibility. For dipolar hard sphere system the values of 𝑝 to 

different densities and dipole moments are given in Tab. 1 [10]. The initial susceptibility given by (8) can 

be obtained from the expression 𝜒 = 𝜕𝑀 𝜕𝐻0⁄  at zero external field, if the effective field is replaced by the 

following in (1): 
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 𝐻𝑒 =
1 + 𝑝

1 − 𝑝
(𝐻0 +

4𝜋

3
𝜌𝑚𝐿(𝛼0)) (9) 

Equation (9) ensures that the initial part of the magnetization curve starts with the required slope. Although 

at higher external field even more overestimates the simulations like any of the former theories. 

Table 1. The probability of the chaining formation at three different dipole moments and wide range of density. 

 
p 

* m*=1 m*=2
0.5

 m*=3
0.5

 

0.1 0.000260 0.000263 0.000580 

0.2 0.000426 0.000429 0.000943 

0.3 0.000615 0.000617 0.00794 

0.4 0.000852 0.00292 0.0250 

0.5 0.00117 0.0110 0.0521 

0.6 0.00164 0.0253 0.0953 

0.7 0.00241 0.0515 0.170 

0.8 0.0135 0.107 0.320 

0.85 0.0269 0.164 0.471 

0.9 0.0539 0.273 0.649 

2. THEORY 

2.1 The approach of effective field at high external field 

As mentioned above, except the Langevin theory the former approaches overestimates the magnetization at 

high external magnetic field. For describing the magnetization in all range of external field a new, correct 

expression has to be found at high external field, then the formulas which have concerned to the low and 

high external field has to be put together. The general failure of the previous theories were just that those 

lumped together the magnetization in the all range. At low external field with appropriate parameters the 

chains are formed, but do not stand in the direction of this field. Nevertheless at high external field the 

direction of chains is parallel to this external field. The overestimating of magnetization may also come 

from that the former approaches the particles regard as 𝐿𝑚 sized, fixed, external field parallel particles, 

instead of 𝑚 sized, swinging ones. In the following a new modification of the effective field will be 

introduced, which decreases the magnetization at high external field. 

It is noticeable from Fig. 1, that decreasing the 4𝜋 3⁄  factor by an appropriate value in (1) the simulation 

data could be reproduced at high external field. The question is the rate of this reduction. At low density 

and dipole moment there is no need to reduce it at all, and higher density and dipole moment as shown on 

Fig. 1, should be reduced in a different value. For this, consider Fig. 3, where the values of effective field 

of Weiss theory (3) are plotted in negative external field as well to two different dipole moments and four 
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different densities. Interestingly that for negative external fields belong to positive effective field, which is 

presumably not a stable equilibrium state. 

 

Figure 3. The values of effective magnetic field according to (3) in function of external magnetic field including the negative 

range at different densities and dipole moments. 

The Weiss theory is applicable to approximate the simulation data at high external field if the curves are 

offset along the ordinate axis to negative direction on Fig. 3. Fig. 4 shows the rates of the offsets at 

𝑚∗2 = 3 dipole moment and three different densities: for each 𝐻0 values must have belong to at most one 

𝐻𝑒  value. Let’s sign by 𝐻0
′  and 𝐻𝑒

′  the abscissa and ordinate of the point on the curve where its slope is 

infinite.  

 

Figure 4. Examples for the extents of the offset. The dotted lines are well aproximated the simulation values of effective field   
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The statement is that the rate of the mentioned offset is 𝐻𝑒
′ , where 𝐻𝑒

′  is a function of 𝑚, 𝜌, and 𝑇. Thus (4) 

changes to the following expression at high external field: 

 
𝐻𝑒 = 𝐻0 + 𝑑𝜌𝑚𝐿(𝛼0) (10) 

The relation between 𝐻𝑒
′  and 𝑑 constant is: 

 𝑑 =
4𝜋

3
−

𝐻𝑒
′

𝜌𝑚
 (11) 

The value of 𝐻𝑒
′  can be determined from the condition that derivative of the original function at 𝐻0

′  

becomes infinite, or by other words only at 𝐻0
′  in the range 𝐻0 < 0, the function 𝐻𝑒(𝐻0) has only one 

value. In (3) the 𝐻𝑒  effective field is the sum of 𝐻0 external and 𝐻𝑝 additional field: 

 
𝐻𝑒 = 𝐻0 + 𝐻𝑝 (12) 

where 

 𝐻𝑝 =
4𝜋

3
𝜌𝑚𝐿(𝛼0 + 𝛼𝑝) (13) 

So the 𝐻0 = 𝐻0
′  value is to be determined, where (13) has exactly one solution in the negative range. Let 

the left side be the function 𝑓 = 𝑓(𝐻𝑝), while the right side is the function 𝑔 = 𝑔(𝐻𝑝) and by plotting both 

in function of 𝐻𝑝, the solution of (13) is illustrativable (Fig. 5). 

 

Figure 5. The graphical solution of (13). Changing the external magnetic field the number of solutions are also changing. 5.a: 

there is no solution if 𝑯𝟎 < 𝑯𝟎
′ ; 5.b: there is only one solution, and the two curves are tangent to each other if 𝑯𝟎 = 𝑯𝟎

′ ; 5.c: there 

are two solutions if 𝑯𝟎
′ < 𝑯𝟎 ≤ 𝟎; 5.d: there is only one solution and the two curves intersect each other if 𝑯𝟎 > 𝟎. 
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Since at 𝐻0
′  the functions 𝑓 and 𝑔 are tangential therefore additional constraint can be determined for their 

differentials: 

 
𝜕𝑓(𝐻𝑝)

𝜕𝐻𝑝

=
𝜕𝑔(𝐻𝑝)

𝜕𝐻𝑝

|
𝐻𝑝=𝐻𝑝

′

= 1 (14) 

Performing the second operation, we get 

 
4𝜋

3
𝜌𝑚2 (𝛼𝑒

′−2
− sinh−2(𝛼𝑒

′ )) = 1 (15) 

This equation has to be solved numerically for 𝐻𝑒
′ . Then substituting 𝐻𝑒

′  into (13) can also be obtained 𝐻0
′  

and 𝐻𝑝
′ . Furthermore, the d constant and the 𝐻𝑒  function can be written according (11) and (10), and 

ultimately from (1) the magnetization can be approached in case of high external magnetic field. 

Table 2. The values of 𝑯𝟎
′∗ and 𝑯𝒆

′∗ calculated numerically from (15) at three different dipole moments and wide range of density. 

 
m*=1 m*=2

0.5
 m*=3

0.5
 

* 𝑯𝟎
′∗ 𝑯𝒆

′∗ 𝑯𝟎
′∗ 𝑯𝒆

′∗ 𝑯𝟎
′∗ 𝑯𝒆

′∗ 

0.1 0 0 0 0 0 0 

0.2 0 0 0 0 0 0 

0.3 0 0 0 0 -0.1052 0.6387 

0.4 0 0 -0.0410 0.5347 -0.4141 1.0055 

0.5 0 0 -0.2401 0.9613 -0.7989 1.2507 

0.6 0 0 -0.5072 1.2315 -1.2276 1.4438 

0.7 0 0 -0.8141 1.4409 -1.6860 1.6069 

0.8 -0.0579 0.7562 -1.1485 1.6159 -2.1664 1.7501 

0.85 -0.1150 0.9495 -1.3238 1.6944 -2.4132 1.8162 

0.9 -0.1823 1.1062 -1.5034 1.7683 -2.6638 1.8792 
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2.2 The synthesis of theories of the effective field 

In section 1.2 and 2.1 the effective field has been written at zero and high external field by (9) and (10). 

Now the synthesis of these expressions is needed. For better comprehension let’s introduce the functions 

𝐴 = 𝐴(𝐻0) and 𝐵 = 𝐵(𝐻0). The effective field can be written: 

 
𝐻𝑒 = 𝐴(𝐻0 + 𝐵𝜌𝑚𝐿(𝛼0)) (16) 

where: 

 𝐴 →
1 + 𝑝

1 − 𝑝
     and     𝐵 →

4𝜋

3
,     if     𝐻0 → 0 (17a) 

and 

 
𝐴 → 1     and     𝐵 → 𝑑,     if     𝐻0 → ∞ (17b) 

For these transitions the well-nown tanh function proved to be suitable with argument 𝑚𝐻0 𝑘𝐵𝑇⁄ . The 

transition to function 𝐴 is implemented by the following expression: 

 𝐴(𝐻0) = (1 − tanh(𝛼0)) (
1 + 𝑝

1 − 𝑝
− 1) + 1 (18) 

After simple transformation can be written as 

 𝐴(𝐻0) =
1 + 𝑝 − 2𝑝 tanh(𝛼0)

1 − 𝑝
 (19) 

The applicable transition to function 𝐵 is: 

 𝐵(𝐻0) = (1 − tanh(𝛼0)) (
4𝜋

3
− 𝑑) + 𝑑 (20) 

Similar to previous transitions function 𝐵 is 

 𝐵(𝐻0) =
4𝜋

3
−

𝐻𝑒
′

𝜌𝑚
tanh(𝛼0) (21) 

In (16) function 𝐵 is multiplied by the Langevin magnetization, which contains the coth function, since 

 𝐿(𝑥) = coth(𝑥) −
1

𝑥
 (22) 
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Due to the relationship between tanh and coth function the second part of (16) is: 

 𝐵𝜌𝑚𝐿(𝛼0) = (
4𝜋

3
−

𝐻𝑒
′

𝜌𝑚
tanh(𝛼0)) 𝜌𝑚𝐿(𝛼0) =

4𝜋

3
𝜌𝑚𝐿(𝛼0) + 𝐻𝑒

′ (
tanh(𝛼0)

𝛼0

− 1) (23) 

Substituting (19) and (23) in (16) the final formula of the effective magnetic field is obtained: 

 𝐻𝑒 =
1 + 𝑝 − 2𝑝 tanh(𝛼0)

1 − 𝑝
[𝐻0 +

4𝜋

3
𝜌𝑚𝐿(𝛼0) + 𝐻𝑒

′ (
tanh(𝛼0)

𝛼0

− 1)] (24) 

3. RESULTS AND DISCUSSION 

Monte Carlo simulations have been performed for dipolar hard sphere fluids to determine the 

magnetization. The simulation values of the effective field are calculated from (1). We applied canonical 

NVT ensemble, Boltzmann sampling, periodic boundary conditions and minimum-image convention [11]. 

In order to take into account the long-ranged character of the dipolar interaction the reaction-field method 

was used. After 100.000 equilibration cycles, 1-3 million production cycles were used. The number of 

particles was 𝑁 = 512. The magnetization was obtained by summarizing the components of the dipoles in 

the direction of external magnetic field: 

 𝑀 =
1

𝑉
∑ 𝒎𝑖

𝑯0

|𝑯0|

𝑁

𝑖=1

 (25) 

Our results on Fig. 6 have been presented at 2-2 different values of densities and dipole moments. The 

effective field based on (24) and the magnetization as well are depicted in function of external magnetic 

field. In contrast with Fig. 1 and 2 the simulation and theoretical results show good agreement. In case of 

former theories the most striking differences were experienced at the „elbow”, around 𝐻0
∗ ≈ 1. By applying 

tanh function in (18) and (20) this problem was handled. 
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Figure 6. The values of magnetization curve (left axis) and effective magnetic field (right axis) in function of external magnetic 

field according to the present theory (24) comparing to the simulations. 

According to Tab. 2 and (24) at low density and high external field the present theory is reproduced the 

results of former theories, because the values of 𝐻𝑒
′  are zero. Similarly according to Tab. 1 and (24) at low 

density and low external field the present theory is reproduced the results of former theories, because the 

values of 𝑝 converge to zero. It can be said that our theory works well up to 𝜌∗ = 0.85. Our study has 

shown perfectly the delusion that the magnetism can be handled theoretically jointly at low and high 

external field. At low external field the chains are not parallal to this external field, but they can be handled 

as macroparticles [10]. While at high external field the chains are more or less parallel to the external field, 

thus the magnetization is determined by the orientation of individual particles forming these chains. 
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4. CONCLUSION 

In this paper a new magnetization formula has been introduced for dense aggregated dipolar hard sphere 

fluids. At low external magnetic field the expression of susceptibility [10] has been used, while at high 

external field the reduction of effective magnetic field has been led to good results. The merging of these 

two theories was done with the help of tanh function. It is importand to emphasize that the final formula 

(24) does not contain empirical elements. The calculation of p chaining probability variable was done 

numerically [10], but not by fitting. The reduction of effective field was justified mathematically, because 

as the Fig. 3 shows in certain cases the 𝐻𝑒(𝐻0) function is divalent, furthermore the particles in the chains 

are not fixed, but are swinging. The calculation of this reduction was also numerical (15). As shown in Fig. 

6 our theory works well at high density and dipole moment as well. 
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