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ABSTRACT 

The goal of the indoor localization is to determine the position and orientation of people, devices, and mobile robots. 

With the rise of Industry 4.0, wireless communication technologies have emerged as a rapidly evolving and crucial area 

for achieving this goal. Various radiocommunication-based technologies, including Bluetooth, Bluetooth Low Energy 

(BLE), Wi-Fi, Ultra-Wideband (UWB), and ZigBee offer means to indirectly estimate distance. These methods leverage 

diverse principles such as time-based measurements, signal strength, and angle of arrival. Indoor positioning systems 

can be categorized into two approaches: distance-based and distance-independent techniques. The Free Space Path Loss 

(FSPL) model describes the connection between distance and Received Signal Strength Indicator (RSSI). The parameters 

within this model significantly impact distance estimation and localization accuracy. Therefore, a method that accurately 

characterizes the model is critical. This work proposes an orientation-based localization technique utilizing RSSI and 

trilateration. Measurements were conducted between two ESP32 units in various orientations to obtain optimal 

parameters for each specific scenario. To assess the effectiveness of this approach, two scenarios were evaluated: one 

considering orientation and another neglecting it. The results show that incorporating orientation information leads to 

significantly more accurate positioning compared to the orientation-agnostic approach. 

Keywords: indoor localization, fingerprinting-based methods, received signal strength indicator, radicommunication-

based technologies 

1. INTRODUCTION 

Indoor localization is becoming increasingly crucial in the era of automation, where precise determination 

of positions and movement trajectories of mobile robots, tools, and workpieces is essential. Unlike outdoors, 

GPS has limited utility indoors due to obstacles that disrupt signals between transmitters and receivers [1], 

[2], [3], [4]. Therefore, alternative technologies and methods are required for indoor positioning. The range 

of devices utilized for indoor positioning systems is remarkably diverse, tailored to specific applications and 

operational needs. Technologies employed include camera systems [5], voice-based systems, radio 

communication-based technologies [6], [7], inertial systems [6], optical systems [3], and magnetic field 

monitoring systems [8], [9], [10]. The choice of technology depends heavily on the specific application 

requirements. Each technology thus offers its own set of advantages and limitations, influencing their 

adoption based on the precision, cost, and environmental conditions pertinent to the indoor localization task. 

Camera systems, while offering comprehensive coverage, tend to be more costly; they demand substantial 

lighting and considerable computational resources. Optical systems, on the other hand, provide high accuracy 

but also come with high costs due to the sophisticated equipment required [3]. Inertial systems, while useful 

for tracking relative positions, suffer from a significant drawback: their error tends to accumulate over time 

[9]. Consequently, they are less reliable for prolonged use without calibration or external correction methods. 

On the other hand, systems based on radio communication technologies are increasingly popular due to their 

scalability and versatility. These systems form wireless sensor networks (WSNs) wherein nodes 

communicate with each other and gather environmental data. The communication standards employed in 

radio communication-based systems are diverse, catering to various requirements of range, power 

consumption, and data transmission rates. Commonly used technologies include Bluetooth [6], WiFi [4], [7], 

[11], Bluetooth Low Energy (BLE), Ultra-Wideband (UWB) [12], ZigBee [13], and Z-Wave. WSNs are 
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highly effective for determining positions and are commonly utilized in indoor environments where 

traditional GPS is ineffective. The methodologies employed within WSNs for positioning can be categorized 

into two broad groups:  

- Range-based methods require measurements of distances or angles between the sensor nodes. 

Commonly used techniques include Time of Flight (TOF), Received Signal Strength Indicator (RSSI) 

[7], Time Difference of Arrival (TDOA) [3], and Angle of Arrival (AOA) [12]. Each of these techniques 

measures different aspects of the signals transmitted between nodes to calculate precise locations [13], 

[14]. 

- Range-free methods do not require precise measurement of distance or angles but rely on proximity or 

connectivity to estimate position. Fingerprinting techniques are a prime example, where the position is 

deduced by matching the observed signal characteristics to a pre-established database of signal patterns 

collected at known locations [7], [8], [13], [14]. 

Once distances or relative positions are ascertained using one of the above methods, a positioning algorithm 

is applied to compute the exact location. Common algorithms include trilateration [3], [15], [16], 

multilateration [15], and triangulation, each utilizing geometric principles to deduce position. This systematic 

approach allows for accurate indoor positioning across various applications, adapting to the specific 

requirements and constraints of the environment [13].  

In this paper, a positioning method was proposed based on antenna orientation, utilizing trilateration to 

estimate positions. This approach harnesses the directional characteristics of antennas to improve the 

accuracy and reliability of position estimation. By measuring the distances from a target to at least three 

known points (antennas), and considering the orientation of each antenna, trilateration allows for the precise 

calculation of the position. 

2. MATERIALS AND METHODS 

2.1. Free Space Path Loss model 

The Free Space Path Loss (FSPL) model is used to describe the propagation of radio signals through free 

space. This model is predicated on the principle that as a radio signal travels through space, it loses strength 

in a predictable manner. FSPL quantitatively expresses how the power of the radio signal decreases as a 

function of the distance between the transmitter and the receiver. The model can be expressed mathematically 

as (1): 

 

𝐹𝑆𝑃𝐿[𝑑𝐵] = 20𝑙𝑜𝑔10(𝑑) + 20𝑙𝑜𝑔10(𝑓) + 20𝑙𝑜𝑔10 (
4𝜋

𝑐
), (1) 

 

where d is the distance between the receiver and the transmitter, f the frequency of the signal and c is the 

speed of light. 

Using this formula, the distance between two modules can be calculated by rearranging the formula to solve 

for 𝑑, assuming the other variables (such as 𝑓 and the FSPL value) are known (2). This calculation is useful 

in systems where the signal strength can be measured, allowing the distance between transmitter and receiver 

to be estimated, facilitating applications like ranging and positioning. 

 

𝑑 = 10−(
𝑅𝑆𝑆𝐼+𝐴

10∗𝑁
)
, (2) 

 

where N is the path loss exponent, which reflects the rate at which the signal decays with distance. N typically 

ranges between 2 (in free space) and 4 (in environments with obstacles such as buildings or trees). A is the 

RSSI value measured at the reference distance (which is usually measured 1 meter from the transmitter). 
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2.2. Particle Swarm Optimization 

The 2 searched parameters, the A and N are determined using Particle Swarm Optimization (PSO). The 

optimization process begins by generating an initial population of particles. Each particle in this population 

is assigned a random fitness value to start. The movement of these particles is governed by their velocities, 

which are calculated based on a combination of influences that include the own best solution (cognitive 

component), the global best solution (social component), and its previous velocity (inertial component). 

During each iteration of the algorithm: 

1. The velocity for each particle is updated by considering both the global best solution (the best solution 

found by any particle in the swarm) and the local best solution (the best solution found by particles) (3). 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑦1𝑢1[𝑝𝑖 − 𝑥𝑖(𝑡)] + 𝑦2𝑢2[𝑔 − 𝑥𝑖(𝑡)], (3) 

 

where 𝜔 is the inertial weight, 𝑣𝑖(𝑡) is the previous velocity of the 𝑖th particle, 𝑦1 and 𝑦2 are the social 

weights, 𝑢1 and 𝑢2 are random numbers, 𝑝𝑖  is the best solution of the particle, 𝑥𝑖(𝑡) represents the 

previous position and 𝑔 is the global best solution. 

2. Using the newly calculated velocity, position of each particle is adjusted. This new position represents 

a potential solution to the optimization problem (4). 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑙𝑣𝑖(𝑡 + 1), (4) 

where 𝑙 is the learning weight. 

3. The fitness value of each new position is evaluated to determine if it represents an improvement over 

previous solution. 

4. If a particle finds a position that is better than any it has found before, it updates its personal best solution. 

Similarly, if a position is better than the global best found by the swarm, the global best is updated. 

The algorithm continues to run until a termination condition is met, which could be a predefined number of 

iterations or a stagnation in fitness value improvement, indicating that further iterations are unlikely to 

produce better solutions. This method effectively searches the solution space by balancing the collective 

knowledge of the swarm (social influence) with individual particle experiences (cognitive influence), guided 

by the momentum of past movements (inertial influence) [11], [14]. 

2.3. Trilateration 

Trilateration is a mathematical technique used for determining the precise position of an object based on the 

distances from multiple known points. It is widely used in various technologies, including GPS and indoor 

positioning systems. The initial step in trilateration is to measure the distance between the object (transmitter) 

and each of the reference points (receivers). These distances can be determined using methods such as RSSI 

or TOF. Each measured distance from a reference point defines the radius of a sphere. The center of each 

sphere is the position of its respective reference point (5).  

 

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)

2 = 𝑟𝑖
2, (5) 

 

where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) represents the coordinates of the center of the spheres, and 𝑟𝑖 is the radius. 

The position is determined at the point where these spheres intersect. Due to noise and measurement 

inaccuracies, the spheres may not intersect at a single point perfectly. Methods like least squares are used to 

estimate the most probable position of the object, minimizing the total distance to the theoretical points of 

intersection [15], [16]. 



Vol. 18, No. 2 2024 

 

DOI: https://doi.org/10.14232/analecta.2024.2.22-29 

 

25 

 

2.4. Measurement system 

The measurement system uses wireless technologies capable of measuring RSSI. The measurement system 

included 2 ESP32s, one of which was an AP, the other a STATION, which can be seen on Fig. 1. Data 

collection was carried out over a 4 meter section with multiple orientations at 20 cm intervals. At each point, 

10 measurements were taken with every orientation, the average of the 10 measurement were used later. The 

position of the AP module remained fixed throughout, with its orientation changing every 90°. The 

STATION module moved along the designated path, and its orientation also changed every 45°. 

 

Figure 1. The STATION node during measurement 

3. EXPERIMENTAL RESULTS 

The results were evaluated in MATLAB environment. The objective function during the optimization was 

calculated using Mean Absolute Error (MAE) (6).  

𝑂𝐹 =
1

𝑛
∑ |�̂� − 𝑑|

𝑛

𝑖=1
, (5) 

where 𝑛 represents the number of measurement points, �̂� is calculated distance and 𝑑 is the real distance. 

3.1. AP in fixed position examining directions separately 

In the first case, the orientation of the modules had a prominent role. There were a total of 32 cases, which 

can be derivated from the 8 station and from the 4 AP orientation. The value of N was between 2.18 and 

5.14, while the reference RSSI was varied between -66 dBm and -54.73 dBm. The smallest error was 20.63 

cm, while the biggest error was 82.36 cm. The results can be seen in Tab. 1. RSSI-Distance functions for 

each Station directions can be seen in Fig. 2, when the AP orientation was 0°. Red line marks the optimized 

function, while the blue line marks the real, measured values. 
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Table 1. Results for the case of AP in fixed position examining directions separately 

Orientation 

Orientation of AP 

0° 90° 180° 270° 

N 
A 

[dBm] 

E 

[cm] 
N 

A 

[dBm] 

E 

[cm] 
N 

A 

[dBm] 

E 

[cm] 
N 

A 

[dBm] 

E 

[cm] 

O
ri

en
ta

ti
o

n
 o

f 
S

ta
ti

o
n

 

0° 4.09 -59.02 51.29 4.58 -55.44 43.57 3.95 -62.12 56.34 3.77 -60.01 46.10 

45° 5.14 -56.00 53.31 4.54 -54.73 56.02 4.34 -59.00 73.04 3.44 -61.63 49.72 

90° 3.50 -60.89 51.77 3.77 -62.01 54.52 4.20 -57.70 56.41 4.21 -60.58 52.38 

135° 3.66 -63.52 61.49 3.86 -63.74 67.60 3.88 -60.91 82.36 4.45 -59.52 69.38 

180° 2.18 -65.69 53.38 4.40 -60.76 52.45 4.80 -58.74 62.73 2.77 -66.00 61.36 

225° 4.20 -58.27 42.28 4.32 -58.00 47.15 4.49 -61.00 61.25 3.99 -60.86 45.40 

270° 4.06 -57.44 42.05 3.16 -63.06 51.72 3.40 -60.08 70.44 3.49 -61.00 49.22 

315° 4.32 -59.16 46.46 4.83 -57.97 56.13 2.79 -64.19 40.63 4.21 -60.57 63.01 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 2. The FSPL model for different STATION orientations, when the orientation of AP was 0°, the orientation of the 

STATION was (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° and (h) 315°  
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3.2. AP in fixed position, angle has no effect 

When the orientation was not considered, the N was 2.39 and the reference RSSI was –64.59 dBm. The 

smallest error was 54.16 cm, while the biggest error was 135.31 cm. The results can be seen in Tab. 2. 

Table 2. Results for the case of AP in fixed position, angle has no effect 

Orientation N A [dBm] 

Orientation of AP 

0° 90° 180° 270° 

E [cm] E [cm] E [cm] E [cm] 

Orientation of 

Station 

0° 

2.39 -64.59 

69.66 77.23 97.51 58.17 

45° 103.46 86.10 103.34 55.30 

90° 65.83 102.49 74.85 88.76 

135° 85.38 113.89 90.23 91.41 

180° 54.16 126.63 94.89 81.07 

225° 61.10 88.51 119.84 88.91 

270° 69.21 66.54 77.89 64.46 

315° 104.66 135.31 56.04 89.70 

 

3.3. Comparison of the cases 

The comparison of the 2 cases can be seen in Tab. 3. The difference of the errors, and the improvement was 

determined. These values are positive if the first case, when the antenna orientation was considered, gave 

smaller errors than the other case. A significant improvement can be considered in the average of the MAE. 

Considering the orientation the average error had a value of 60.3 cm, while in the other case it had 85.7 cm. 

Considering the orientation gave better results in 28 cases from the 32 examined cases. The biggest 

improvement had a value of 77.34 cm, which is 57% relative improvement 
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Table 3. Results for the case of AP in fixed position, angle has no effect 

 

Orientation of AP 

0° 90° 180° 270° 

Diffe-

rence 

[cm] 

Improve-

ment 

[%] 

Diffe-

rence 

[cm] 

Improve-

ment 

[%] 

Diffe-

rence 

[cm] 

Improve-

ment 

[%] 

Diffe

rence 

[cm] 

Improve-

ment 

[%] 

O
ri

en
ta

ti
o

n
 o

f 
S

ta
ti

o
n

 

0° 10.64 15% 21.79 28% 35.38 36% -1.85 -3% 

45° 47.46 46% 31.38 36% 44.34 43% -6.33 -11% 

90° 4.94 8% 40.48 39% 17.16 23% 28.17 32% 

135° 21.85 26% 50.15 44% 29.32 32% 31.89 35% 

180° -11.53 -21% 65.87 52% 36.15 38% 15.07 19% 

225° 2.83 5% 30.51 34% 58.84 49% 28.05 32% 

270° 11.77 17% 3.48 5% 17.81 23% 3.46 5% 

315° 45.50 43% 77.34 57% -8.15 -15% 29.13 32% 

 

4. CONCLUSIONS 

This research introduced an orientation-focused optimization approach for assessing the environmental 

factor and reference RSSI in the FSPL model, using two different methods. The parameter optimization was 

conducted with the PSO algorithm. In the initial approach, the direction of the antenna was a key factor, 

whereas in the second method, data from all orientations were collectively used to set the parameters. The 

findings indicate that including the orientation enhances distance estimation substantially. This method 

enables an orientation-sensitive, RSSI-based distance measurement that could greatly enhance localization 

performance. Future objectives involve expanding measurements to more angles and using the trilateration 

technique for position calculations. 
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