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ABSTRACT 

This paper addresses accelerometer array calibration, focusing on determining the errors between multiple sensors. 

Micro-electromechanical system (MEMS) based triaxial accelerometers, key components of Inertial Measurement Units 

(IMUs), are used in localization, robotics, and navigation systems. The requirements of these applications necessitate 

low-cost sensors, which makes MEMS IMUs a reasonable choice. However, these low-cost IMUs are significantly 

affected by systematic (i.e., bias, misalignment, scale-factor) and random errors. Achieving reliable sensor output 

depends on the precision of the executed calibration method. While traditional laboratory-based sensor calibration using 

specialized equipment (i.e., three-axis turntable) is accurate, it is time-consuming and costly. In contrast, in-field 

calibration techniques, which can be performed using a mechatronic actuator or a robotic arm, have gained popularity. 

These techniques involve comparing sensor measurements to established reference values. The MEMS sensors are 

increasingly being used in multi-sensor applications, which demands not only individual sensor error calibration but also 

important to determine the axis misalignment between the used sensors. During calibration process, various optimization 

algorithms (e.g., GA, PSO) can also be used to find the error parameters. The proposed measurement system allows for 

individual calibration of misalignment, bias, and scale factor of the sensor array, and eliminates between-sensor 

misalignment errors. 
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1. INTRODUCTION 

Inertial Measurement Units (IMUs) combine three tri-axial sensors, the accelerometer, gyroscope and 

magnetometer. These sensors have a wide range of use in many applications, such as Unmanned Aerial 

Vehicle (UAV), Automatic Guided Vehicle (AGV), localization applications, human movement and terrain 

classification [1] [2] [3] [4] [5].  Due to their low cost and high-resolution output, they are becoming more 

and more popular nowadays. Unfortunately, these IMUs are still not able to match the accuracy on the output 

required by many applications (i.e., Inertial Navigation Systems – INS). Many commercially available, low-

cost IMUs come without calibration. Imperfections in the manufacturing process of the circuit board and 

IMU boards can lead to discrepancies between the sensitivity axes of the IMU and the coordinate system of 

the sensor board. However, as with general measurement systems, IMUs suffer from several drawbacks such 

as misalignment of sensors because of packaging errors, large offsets, non-linearity, drift and random noise. 

Moreover, in the case of accelerometer arrays, the sensitivity axes of the sensors in the array are not perfectly 

aligned [2]. An overview of multi-IMU (MIMU) systems are presented in [2].  

Micro-electromechanical systems (MEMS) triaxial accelerometer is the vital component of IMUs, providing 

high-accuracy acceleration information about each three axes. Acceleration information can be turned into 

useful data for position, velocity, and attitude determination of an object. Before deploying sensors like 

accelerometers, gyroscopes, and magnetometers, calibration is an essential step. While some high-quality 

MEMS-IMUs have been precisely calibrated and don’t require further calibration, most consumer-grade 

IMUs are not adequately or not calibrated at all. This is often due to the desire to cut costs associated with 

calibration efforts. A detailed overview of the possible methods of calibrating an accelerometer is shown in 

[6]. Literature mentions two main possible ways for calibrating an accelerometer. First part employs the 
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traditional calibration methods that require costly rotation rigs (i.e., three-axis turntable), since the calibration 

of accelerometer can be done by using the fact that the vector magnitude should be the local gravity 

acceleration [7]. Where the magnitude of acceleration is 1𝑔. The second part of calibration methods is the 

in-field calibration, which is an alternative calibration procedure that does not require expensive turntables. 

In reference [8] [9] [10], the in-field calibration techniques were discussed. Furthermore, optimization 

algorithms, like Particle Swarm Optimization (PSO) [11] [12] and Genetic Algorithm (GA) [7] in addition 

Artificial Neural Networks (ANN) [13] [14] and Adaptive Neuro Fuzzy Inference System (ANFIS) [15] [16] 

can be used to calibrate the sensors by comparing the sensor outputs with an established ground truth data.  

In this work, a measurement system was demonstrated using multiple IMUs and an industrial robotic arm, 

such as Universal Robots UR5. Using this measurement system the calibration of five IMU sensor errors can 

be performed at once, including the bias, scale factors and misalignment individually and the misalignment 

between the sensors as well. The robotic arm can provide the ground truth information for the compensation 

of the sensor readings.  

2. SENSOR MODELING 

The readings from the accelerometer are affected by several errors, which can be categorized into systematic 

errors and random errors (also referred to as noise). Systematic errors that typically affect the performance 

of the system include bias, scale factor, frame misalignment and non-orthogonality errors, as depicted in Fig. 

1. Sensor misalignment generally originates from two primary sources: 

 

• The discrepancy between the sensor board and the sensor chip itself, as the two frames may not be 

perfectly aligned. This misalignment can be a result of the manufacturing process. 

 

• Errors that occur when the sensor board is installed onto an external device (carrying body). 

 

 

Figure 1. Most common systematic errors: a) bias, b) misalignment, c) scale factor and d) non-orthogonality 

When an IMU sensor is installed on a different external object, particularly when the body frame changes, 

it's crucial to calibrate the misalignment error. Given that both the body frame and sensor frame are assumed 

to be perfect and orthogonal, we need to compute a minor angle rotation matrix, as shown in equation (2), 

that can translate the readings from the sensor frame to the body frame. The data gathered with the MEMS 

accelerometer can be represented as follows: 

 

[
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The misalignment errors can be represented using the three rotation matrices. This facilitates a more accurate 

alignment of the sensor with the external body. Rotation matrices 𝑅𝑥(ϕ), 𝑅𝑦 (𝜃) and 𝑅𝑧(𝜓) indicate the 
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rotation deviation among the frames (i.e., sensor board, sensor chip, external surface). Combining all 

matrices (i.e., 𝑅 = 𝑅𝑥 ⋅ 𝑅𝑦 ⋅ 𝑅𝑧), the main 𝑅 rotation can be expressed as (2), where the trigonometric 

functions are introduced in abbreviated forms (s𝛼 = sin𝛼, and c𝛼 = cos𝛼). 
 

𝑅 = [

c𝜃c𝜓 c𝜃s𝜓 −s𝜃
−c𝜃s𝜓 + s𝜙s𝜃s𝜓 c𝜙c𝜓 + s𝜙s𝜃s𝜓 s𝜙c𝜃
s𝜙s𝜓 + c𝜙s𝜃c𝜓 −s𝜙c𝜓 + c𝜙s𝜃s𝜓 c𝜙c𝜃

] (2) 

 

3. PROPOSED MEASUREMENT SYSTEM AND DATA ACQUISITION 

The measurement system consists of an ESP32 NodeMCU microcontroller unit (MCU) and five MPU9250 

IMUs. Each offering 9 degrees of freedom (9DoF). These components are connected to the MCU and 

together, they form a Robot Operating System (ROS) node. The MPU9250 (GY-9250) is a popular 

consumer-grade IMU shown in Fig. 2. It was selected due to its cost-effectiveness, and since it combines 

three tri-axial sensors: a 3DoF accelerometer, a 3DoF gyroscope, and a 3DoF magnetometer.  

The sensors were mounted on a 3D printed tool at the robot’s end-effector, as shown in Fig. 3. All the IMU 

sensors were placed in one plane, with uniform spacing between the sensor chips, as demonstrated in the Fig. 

2. The coordinate system of the five IMUs corresponded to the robot’s Tool Center Point (TCP) frame. 

The MCU was used to read sensor data via the SPI interface and transmit them to a PC through a USB serial 

port. The ESP32 established a ROS publishing node using the rosserial library. Sensors were sampled at a 

frequency of 100Hz, and the data were published to ROS on dedicated IMU topics with a timestamp. 

The device that performed the motions for the calibration of the accelerometer array was a Universal Robots 

UR5 robotic arm, which was also operated within ROS. A node was developed that can control the robotic 

arm to desired positions in three-dimensional space and the motion planning was achieved using predefined 

joint states. These angle values can be used to move the robot to the specific desired joint coordinates using 

joint motion. Concurrently with the execution of the motion, the IMU measurements can also be recorded in 

ROS. In addition to the sensor readings, the robot’s TCP position and orientation can be logged. The ROS 

framework enables the logging of these data during the robot’s movements, facilitating the creation of a 

comprehensive database. The calibration of the accelerometers can be done by the comparison of the 

achieved acceleration by the robot’s end-effector and the sensors.  

 

 

 
 

Figure 2. Arrangement of IMUs on the 3D printed end-effector 
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Figure 3. IMU array fixed to the UR5 robotic arm 

3.1. Executed trajectories and accelerometer measurements 

With the UR5 robotic arm, a spherical workspace with a maximum diameter of 1700mm can be accessed. 

The proposed method allows for the creation of trajectories that consist solely of joint movements. The TCP 

paths were constructed randomly using joint coordinates. The aim was to generate such trajectories (Fig. 4.) 

which, when executed, can provide the right amount of acceleration with the sensors mounted on the robot 

for the calibration. During the execution the five IMU sensors were sampled, in addition the position, and 

the orientation of the end-effector has been recorded. Fig. 4. shows some of the executed trajectories based 

on the collected TCP position.  

By using the position of the TCP, the true acceleration can be calculated, which can be the ground truth for 

the calibration. The first derivative of position results in velocity (3), and its second derivative will result the 

acceleration (4).  

 

𝑣[𝑛] =
𝑥[𝑛] − 𝑥[𝑛 − 1]

∆𝑡
 (3) 

 

𝑎[𝑛] =
𝑣[𝑛] − 𝑣[𝑛 − 1]

∆𝑡
=  

(𝑥[𝑛] − 𝑥[𝑛 − 1]) − (𝑥[𝑛 − 1] − 𝑥[𝑛 − 2])

(∆𝑡2)
 (4) 

 

Where 𝑣[𝑛] indicates the velocity calculated from position 𝑥[𝑛].  In addition, 𝑎[𝑛] denotes the acceleration 

that can be determined from the second derivative of position or first derivative of velocity. ∆𝑡 is a small 

change in time. 
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Figure 4. Some of the executed trajectories by the UR5 robot 

   

 

 
Figure 5. Measurements with the five sensors for one trajectory 

 

Fig. 5. demonstrates the raw measurements for one trajectory with the five accelerometers. The little 

difference presence between the sensor measurements is related to the sensor errors, that need to be 

calibrated.  

3.2. Gravitational force compensated measurements 

The gathered values of roll (𝜙), pitch (𝜃), and yaw (𝜓) angles illustrate the rotational relationship between 

the robot’s base frame and the TCP frame, where the sensors were positioned. These values can be utilized 

to construct a rotation matrix, which can then be used to express the transformation between the two 

coordinate systems. This approach allows for the transformation of measurement vectors into the base, with 

the 1𝑔 (which can be represented as [0 0 1]𝑇) value being subtracted from them (5). The accelerometer 

measurements, which have been compensated with gravitational effects and the computed ground truth are 

depicted in Fig. 6. 

  

[
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]) − [
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𝑔𝑦

𝑔𝑧

] (5) 

 

Where the 3𝑥1 size 𝐴𝑏𝑎𝑠𝑒vector represents the transformed and compensated acceleration in the base frame, 

𝑅 (3𝑥3) indicates the rotation matrix constructed with the 𝜙, 𝜃 and 𝜓 angles and the 3𝑥1 𝐴𝑇𝐶𝑃vector denotes 

the sensor readings in the TCP frame. 
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Figure 6. Compensated sensor measurements compared to the acceleration of the UR5 robot’s TCP 

The calculated ground truth accelerations can be applied as reference for the calibration of accelerometers, 

and it can be used to develop various specific algorithms for sensor calibration purposes. 

4. CONCLUSIONS 

In this work, a robotic arm-based measurement system was proposed, which can be used for the calibration 

of IMU arrays. The proposed measurement system consists of a Universal Robots UR5 robot that can perform 

dynamic motions and ensure its end-effector orientation for the ground truth data. In addition, ESP32 MCU 

was constructed as a ROS node along with five MPU9250 IMUs. The MCU was used to read and transmit 

the sensor measurements.   

The used UR5 robotic arm is calibrated, so the obtained TCP position and orientation can be used to calculate 

the target for the calibration. Using this information any heuristic algorithm (e.g., PSO, GA, etc.) or an ANN 

can be used to correct the sensor readings. Misalignment, bias and the scale factor of the sensors can be 

calibrated individually and moreover the between sensor misalignment errors can be eliminated at the same 

time using the proposed method.  
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